Potential of modern investigations for detecting and monitoring asymptomatic congestion in patients with heart failure
https://doi.org/10.15829/1560-4071-2021-4265
Abstract
Congestion associated with pressure and/or volume overload plays a central role in the pathophysiology, manifestations and prognosis of heart failure, being one of the important aims of its therapy. The current methods for congestion diagnosis, mainly clinical, have low sensitivity and specificity, which can lead to a delay in diagnosis and initiation of treatment.
Over the past decades, novel, more sensitive and specific ultrasound techniques have been developed to detect increased intracardiac pressure and/or volume overload, providing early and accurate diagnosis and facilitating treatment strategies. The review discusses the role of modern investigations for detecting and quantifying congestion, including visualization of the lungs (B-lines), kidneys (intrarenal venous flow) and the venous system (diameter of the inferior vena cava and internal jugular veins), and transient elastography.
About the Authors
Zh. D. KobalavaRussian Federation
Moscow
Competing Interests: not
L. V. Kokhan
Russian Federation
Moscow
Competing Interests: not
A. F. Safarova
Russian Federation
Moscow
Competing Interests: not
M. V. Vatsik-Gorodetskaya
Russian Federation
Moscow
Competing Interests: not
S. A. Galochkin
Russian Federation
Moscow
Competing Interests: not
References
1. Allen LA, Stevenson LW, Grady KL, et al. Decision making in advanced heart failure: A scientific statement from the American heart association. Circulation. 2012;125(15):1928-52. doi:10.1161/CIR.0b013e31824f2173.
2. Hollenberg SM, Warner Stevenson L, Ahmad T, et al. 2019 ACC Expert Consensus Decision Pathway on Risk Assessment, Management, and Clinical Trajectory of Patients Hospitalized With Heart Failure: A Report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2019;74(15):1966-2011. doi:10.1016/j.jacc.2019.08.001.
3. Ambrosy AP, Pang PS, Khan S, et al. Clinical course and predictive value of congestion during hospitalization in patients admitted for worsening signs and symptoms of heart failure with reduced ejection fraction: findings from the EVEREST trial. Eur Heart J. 2013;34(11):835-43. doi:10.1093/eurheartj/ehs444
4. Kobalava ZhD, Safarova AF, Soloveva AE, et al. Pulmonary congestion assessed by lung ultrasound in decompensated heart failure. Kardiologiya. 2019;59(8):5-14. (In Russ.) doi:10.18087/cardio.2019.8.n534.
5. Alvarez-Garcia J, Rivas-Lasarte M, Benedicto AM, et al. Subclinical Pulmonary Congestion: A Silent And Prevalent Killer At Heart Failure Discharge. J Am Coll Cardiol. 2020;75(11):1093. doi:10.1016/s0735-1097(20)31720-4.
6. Rubio-Gracia J, Demissei BG, ter Maaten JM, et al. Prevalence, predictors and clinical outcome of residual congestion in acute decompensated heart failure. Int J Cardiol. 2018;258:185-91. doi:10.1016/j.ijcard.2018.01.067.
7. Kobalava ZhD, Safarova AF, Kokhan EV, Islamova MR. Lung ultrasound in optimizing management of patients with heart failure: current status and future prospects. Russian Journal of Cardiology. 2020;25(1):3666. (In Russ.) doi:10.15829/1560-4071-2020-1-3666.
8. Grodin JL, Drazner MH. Lung Ultrasound: Our New “Sixth Sense”? JACC Hear Fail. 2019;7(10):859-61. doi:10.1016/j.jchf.2019.08.006.
9. Picano E, Scali MC, Ciampi Q, Lichtenstein D. Lung Ultrasound for the Cardiologist. JACC Cardiovasc Imaging. 2018;11(11):1692-705. doi:10.1016/j.jcmg.2018.
10. Platz E, Merz AA, Jhund PS, et al. Dynamic changes and prognostic value of pulmonary congestion by lung ultrasound in acute and chronic heart failure: a systematic review. Eur J Heart Fail. 2017;19(9):1154-63. doi:10.1002/ejhf.839.
11. Platz E, Campbell RT, Claggett B, et al. Lung Ultrasound in Acute Heart Failure: Prevalence of Pulmonary Congestion and Short- and Long-Term Outcomes. JACC Hear Fail. 2019;7(10):849-58. doi:10.1016/j.jchf.2019.07.008.
12. Volpicelli G, Elbarbary M, Blaivas M, et al. International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med. 2012:577-91. doi:10.1007/s00134-012-2513-4.
13. Platz E, Jhund PS, Girerd N, et al. Expert consensus document: Reporting checklist for quantification of pulmonary congestion by lung ultrasound in heart failure. Eur J Heart Fail. 2019;21(7):844-51. doi:10.1002/ejhf.1499.
14. Frasure SE, Matilsky DK, Siadecki SD, et al. Impact of patient positioning on lung ultrasound findings in acute heart failure. Eur Heart J Acute Cardiovasc Care. 2015;4(4):326-32. doi:10.1177/2048872614551505.
15. Cogliati C, Casazza G, Ceriani E, et al. Lung ultrasound and short-term prognosis in heart failure patients. Int J Cardiol. 2016;218:104-108. doi:10.1016/j.ijcard.2016.05.010.
16. Scali MC, Cortigiani L, Simionuc A, et al. Exercise-induced B-lines identify worse functional and prognostic stage in heart failure patients with depressed left ventricular ejection fraction. Eur J Heart Fail. 2017;19(11):1468-1478. doi:10.1002/ejhf.776.
17. Simonovic D, Coiro S, Carluccio E, et al. Exercise elicits dynamic changes in extravascular lung water and haemodynamic congestion in heart failure patients with preserved ejection fraction. Eur J Heart Fail. 2018;20(9):1366-69. doi:10.1002/ejhf.1228.
18. Scali MC, Zagatina A, Simova I, et al. B-lines with Lung Ultrasound: The Optimal Scan Technique at Rest and During Stress. Ultrasound Med Biol. 2017;43(11):2558-66. doi:10.1016/j.ultrasmedbio.2017.07.007.
19. Picano E, Scali MC. The lung water cascade in heart failure. Echocardiography. 2017;34(10):1503-1507. doi:10.1111/echo.13657.
20. Coiro S, Rossignol P, Ambrosio G, et al. Prognostic value of residual pulmonary congestion at discharge assessed by lung ultrasound imaging in heart failure. Eur J Heart Fail. 2015;17(11):1172-81. doi:10.1002/ejhf.344.
21. Nagueh SF, Smiseth OA, Appleton CP, et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2016;17(12):1321-1360. doi:10.1093/ehjci/jew082.
22. Huttin O, Fraser AG, Coiro S, et al. Impact of Changes in Consensus Diagnosti Recommendations on the Echocardiographic Prevalence of Diastolic Dysfunction. J Am Coll Cardiol. 2017;69(25):3119-3121. doi:10.1016/j.jacc.2017.04.039.
23. Hubert A, Girerd N, Le Breton H, et al. Diagnostic accuracy of lung ultrasound for identification of elevated left ventricular filling pressure. Int J Cardiol. 2019;281:62-68. doi:10.1016/j.ijcard.2019.01.055.
24. Miglioranza MH, Gargani L, Sant’Anna RT, et al. Lung ultrasound for the evaluation of pulmonary congestion in outpatients: a comparison with clinical assessment, natriuretic peptides, and echocardiography. JACC Cardiovasc Imaging. 2013;6(11):1141-51. doi:10.1016/j.jcmg.2013.08.004.
25. Laffin LJ, Patel AV, Saha N, et al. Focused cardiac ultrasound as a predictor of readmission in acute decompensated heart failure. Int J Cardiovasc Imaging. 2018;34(7):1075-1079. doi:10.1007/s10554-018-1317-1.
26. Cubo-Romano P, Torres-Macho J, Soni NJ, et al. Admission inferior vena cavameasurements are associated with mortality after hospitalization for acute decompensated heart failure. J Hosp Med. 2016;11(11):778-784. doi:10.1002/jhm.2620.
27. Pellicori P, Shah P, Cuthbert J, et al. Prevalence, pattern and clinical relevance of ultrasound indices of congestion in outpatients with heart failure. Eur J Heart Fail. 2019;21(7):904-916. doi:10.1002/ejhf.1383.
28. Drazner MH, Rame JE, Stevenson LW, Dries DL. Prognostic importance of elevated ugular venous pressure and a third heart sound in patients with heart failure. N Engl J Med. 2001;345(8):574-81. doi:10.1056/NEJMoa010641.
29. Pellicori P, Clark AL, Kallvikbacka-Bennett A, et al. Non-invasive measurement of right atrial pressure by near-infrared spectroscopy: preliminary experience. A report from the SICA-HF study. Eur J Heart Fail. 2017;19(7):883-892. doi:10.1002/ejhf.825.
30. Pellicori P, Kallvikbacka-Bennett A, Zhang J, et al. Revisiting a classical clinical sign: jugular venous ultrasound. Int J Cardiol. 2014;170(3):364-70. doi:10.1016/j.ijcard.2013.11.015.
31. Simon MA, Schnatz RG, Romeo JD, Pacella JJ. Bedside Ultrasound Assessment of Jugular Venous Compliance as a Potential Point-of-Care Method to Predict Acute Decompensated Heart Failure 30-Day Readmission. J Am Heart Assoc. 2018;7(15):e008184. doi:10.1161/JAHA.117.008184.
32. Pellicori P, Kallvikbacka-Bennett A, Dierckx R, et al. Prognostic significance of ultrasound-assessed jugular vein distensibility in heart failure. Heart. 2015;101(14):1149-58. doi:10.1136/heartjnl-2015-307558.
33. Tang WH, Mullens W. Cardiorenal syndrome in decompensated heart failure. Heart. 2010;96(4):255-60. doi:10.1136/hrt.2009.166256.
34. Iida N, Seo Y, Sai S, et al. Clinical Implications of Intrarenal Hemodynamic Evaluation by Doppler Ultrasonography in Heart Failure. JACC Heart fail. 2016;4(8):674-82. doi:10.1016/j.jchf.2016.03.016.
35. Nijst P, Martens P, Dupont M, et al. Intrarenal Flow Alterations During Transition From Euvolemia to Intravascular Volume Expansion in Heart Failure Patients. JACC Heart fail. 2017;5(9):672-681. doi:10.1016/j.jchf.2017.05.006.
36. Puzzovivo A, Monitillo F, Guida P, et al. Renal Venous Pattern: A New Parameter for Predicting Prognosis in Heart Failure Outpatients. Cardiovasc Dev Dis. 2018;5(4):52. doi:10.3390/jcdd5040052.
37. de la Espriella-Juan R, Nunez E, Minana G, et al. Intrarenal venous flow in cardiorenal syndrome: a shining light into the darkness. ESC heart failure. 2018;5(6):1173-1175. doi:10.1002/ehf2.12362.
38. Ciccone MM, Iacoviello M, Gesualdo L, et al. The renal arterial resistance index: a marker of renal function with an independent and incremental role in predicting heart failure progression. Eur J Heart Fail. 2014;16(2):210-6. doi:10.1002/ejhf.34.
39. Jeong SH, Jung DC, Kim SH, Kim SH. Renal venous doppler ultrasonography in normal subjects and patients with diabetic nephropathy: value of venous impedance index measurements. J Clin Ultrasound. 2011;39(9):512-8. doi:10.1002/jcu.20835.
40. Tang WH, Kitai T. Intrarenal Venous Flow: A Window Into the Congestive Kidney Failure Phenotype of Heart Failure? JACC Heart fail. 2016;4(8):683-6. doi:10.1016/j.jchf.2016.05.009.
41. Bateman GA, Cuganesan R. Renal vein Doppler sonography of obstructive uropathy. AJR Am J Roentgenol. 2002;178(4):921-5. doi:10.2214/ajr.178.4.1780921.
42. Morozov SV, Kucheriavy YuA, Stukova NYu, Krasnaykova EA. Indirect ultrasound elas-tography of the liver: from diagnostics of liver fibrosis to control over its treatment. Dokazatalnaya gastroenterologiya. 2013;2(2):31-7. (In Russ.)
43. Taniguchi T, Sakata Y, Ohtani T, et al. Usefulness of transient elastography for noninvasive and reliable estimation of right-sided filling pressure in heart failure. Am J Cardiol. 2014;113(3):552-8. doi:10.1016/j.amjcard.2013.10.018.
44. Lindvig K, Mossner BK, Pedersen C, et al. Liver stiffness and 30-day mortality in a cohort of patients admitted to hospital. Eur J Clin Invest. 2012;42(2):146-52. doi:10.1111/j.1365-2362.2011.02571.x.
45. Solovyeva AE, Kobalava ZD, Villevalde SV, et al. Prognostic value of liver stiffness in decompensated heart failure: results of prospective observational transient elastography-based study. Kardiologiia. 2018;58(10S):20-32. (In Russ.) doi:10.18087/cardio.2488.
46. Ponikowski P, Voors AA, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016;18(8):891-975. doi:10.1002/ejhf.592.
47. Yancy CW, Jessup M, Bozkurt B, et al. 2017 ACC/AHA/HFSA Focused Update of 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation. 2017;136(6):e137-e161. doi:10.1161/CIR.0000000000000509.
48. Gargani L, Sicari R, Raciti M, et al. Efficacy of a remote web-based lung ultrasound training for nephrologists and cardiologists: a LUST trial sub-project. Nephrol Dial Transplant. 2016;31(12):1982-1988. doi:10.1093/ndt/gfw329.
49. Pivetta E, Goffi A, Nazerian P, et al. Lung ultrasound integrated with clinical assessment for the diagnosis of acute decompensated heart failure in the emergency department: a randomized controlled trial. Eur J Heart Fail. 2019;21(6):754-766. doi:10.1002/ejhf.1379.
50. Araiza-Garaygordobil D, Gopar-Nieto R, Martinez-Amezcua P, et al. A randomized controlled trial of lung ultrasound-guided therapy in heart failure (CLUSTER-HF study). Am Heart J. 2020;227:31-39. doi:10.1016/j.ahj.2020.06.003.
51. Wang Y, Gargani L, Barskova T, et al. Usefulness of lung ultrasound B-lines in connective tissue disease-associated interstitial lung disease: a literature review. Arthritis Res Ther. 2017;19(1):206. doi:10.1186/s13075-017-1409-7.
52. Ziol M, Handra-Luca A, Kettaneh A, et al. Noninvasive assessment of liver fibrosis by measurement of stiffness in patients with chronic hepatitis C. Hepatology. 2005;41(1):48-54. doi:10.1002/hep.20506.
53. Fraquelli M, Rigamonti C, Casazza G, et al. Reproducibility of transient elastography in the evaluation of liver fibrosis in patients with chronic liver disease. Gut. 2007;56(7):968-73. doi:10.1136/gut.2006.111302.
54. Bikdeli B, Madhavan MV, Jimenez D, et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-the-Art Review. J Am Coll Cardiol. 2020;75(23):2950-2973. doi:10.1016/j.jacc.2020.04.031.
Supplementary files
Review
For citations:
Kobalava Zh.D., Kokhan L.V., Safarova A.F., Vatsik-Gorodetskaya M.V., Galochkin S.A. Potential of modern investigations for detecting and monitoring asymptomatic congestion in patients with heart failure. Russian Journal of Cardiology. 2021;26(1):4265. (In Russ.) https://doi.org/10.15829/1560-4071-2021-4265