Фиброзные изменения сердечно-сосудистой и дыхательной систем после перенесенной COVID-19: вклад факторов иммунной системы и генетическая предрасположенность
Аннотация
Об авторах
А. С. ГоловкинРоссия
Алексей Сергеевич Головкин — руководитель группы генно-клеточной инженерии Института молекулярной биологии и генетики
ResearcherID: I-2583-2014
Санкт-Петербург
И. В. Кудрявцев
Игорь Владимирович Кудрявцев — зав. лабораторий иммунорегуляции отдела иммунологии
ResearcherID: D-2124-2013
Санкт-Петербург
А. В. Дмитриев
Россия
Александр Валентинович Дмитриев — директор института
Санкт-Петербург
О. В. Калинина
Россия
Ольга Викторовна Калинина — зав. кафедрой биологии института медицинского образования
ResearcherID: L-1822-2017
Санкт-Петербург
Список литературы
1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–33.
2. World Health Organization (WHO). Emergencies preparedness, response Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003 [Internet]. Vol. 9, World Health Organization. 2020. p. 2003–5. Available from: https://www.who.int/csr/sars/country/table2004_04_21/en/
3. (WHO) WHO. Middle East respiratory syndrome coronavirus (MERS-CoV) – Saudi Arabia. [Internet]. World Health Organization. 2020. Available from: https://www.who.int/csr/don/02-jul-2020-mers-saudi-arabia/en/
4. WHO. Brazil: WHO Coronavirus Disease (COVID-19) Dashboard | WHO Coronavirus Disease (COVID-19) Dashboard [Internet]. Who. 2020. Available from: https://covid19.who.int/%0Ahttps://covid19.who.int/region/wpro/country/cn%0Ahttps://covid19.who.int/?gclid=CjwKCAjwztL2BRATEiwAvnALcpJvfJoB2ZO9AW4cscOjOPpuNNisqVVlTkpdslGJOuXSFkrhbLCafxoCjB0QAvD_BwE%0Ahttps://covid19.who.int/region/amro/country/br
5. World Health Organization (WHO). Naming the coronavirus disease (COVID-19) and the virus that causes it [Internet]. World Health Organization. 2020. p. 1. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it
6. Wu Z, McGoogan JM. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases from the Chinese Center for Disease Control and Prevention. JAMA - J Am Med Assoc [Internet]. 2020 Apr 7;323(13):1239–42. Available from: https://jamanetwork.com/journals/jama/fullarticle/2762130
7. Venkataraman T, Frieman MB. The role of epidermal growth factor receptor (EGFR) signaling in SARS coronavirus-induced pulmonary fibrosis. Antiviral Res [Internet]. 2017 Jul;143:142–50. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0166354216307975
8. Venkataraman T, Coleman CM, Frieman MB. Overactive Epidermal Growth Factor Receptor Signaling Leads to Increased Fibrosis after Severe Acute Respiratory Syndrome Coronavirus Infection. J Virol. 2017;91(12):1–17.
9. Zhang P, Li J, Liu H, Han N, Ju J, Kou Y, et al. Long-term bone and lung consequences associated with hospital-acquired severe acute respiratory syndrome: a 15-year follow-up from a prospective cohort study. Bone Res [Internet]. 2020;8(1). Available from: http://dx.doi.org/10.1038/s41413-020-0084-5
10. Vanzant EL, Lopez CM, Ozrazgat-Baslanti T, Ungaro R, Davis R, Cuenca AG, et al. Persistent inflammation, immunosuppression, and catabolism syndrome after severe blunt trauma. J Trauma Acute Care Surg [Internet]. 2014 Jan;76(1):21–30. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=01586154-201401000-00004
11. Graney BA, Wamboldt FS, Baird S, Churney T, Fier K, Korn M, et al. Looking ahead and behind at supplemental oxygen: A qualitative study of patients with pulmonary fibrosis. Hear Lung J Acute Crit Care [Internet]. 2017 Sep;46(5):387–93. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0147956317301450
12. Faverio P, De Giacomi F, Bonaiti G, Stainer A, Sardella L, Pellegrino G, et al. Management of Chronic Respiratory Failure in Interstitial Lung Diseases: Overview and Clinical Insights. Int J Med Sci [Internet]. 2019;16(7):967–80. Available from: http://www.medsci.org/v16p0967.htm
13. Lo Re S, Lison D, Huaux F. CD4 + T lymphocytes in lung fibrosis: diverse subsets, diverse functions . J Leukoc Biol. 2013;93(4):499–510.
14. Zhou P, Yang X Lou, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature [Internet]. 2020;579(7798):270–3. Available from: http://dx.doi.org/10.1038/s41586-020-2012-7
15. Li F. Evidence for a Common Evolutionary Origin of Coronavirus Spike Protein Receptor-Binding Subunits. J Virol. 2012;86(5):2856–8.
16. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science (80- ) [Internet]. 2020 Mar 27;367(6485):1444–8. Available from: https://www.sciencemag.org/lookup/doi/10.1126/science.abb2762
17. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh C-L, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (80- ) [Internet]. 2020 Mar 13;367(6483):1260–3. Available from: https://www.sciencemag.org/lookup/doi/10.1126/science.abb2507
18. Bari E, Ferrarotti I, Saracino L, Perteghella S, Torre ML, Corsico AG. Mesenchymal Stromal Cell Secretome for Severe COVID-19 Infections: Premises for the Therapeutic Use. Cells. 2020;9(4):5–9.
19. Turner AJ. ACE2 Cell Biology, Regulation, and Physiological Functions. In: The Protective Arm of the Renin Angiotensin System (RAS): Functional Aspects and Therapeutic Implications [Internet]. Elsevier; 2015. p. 185–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128013649000250
20. Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436(7047):112–6.
21. Vankadari N, Wilce JA. Emerging WuHan (COVID-19) coronavirus: glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg Microbes Infect. 2020;9(1):601–4.
22. Kong LM, Liao CG, Zhang Y, Xu J, Li Y, Huang W, et al. A regulatory loop involving miR-22, Sp1, and c-Myc modulates CD147 expression in breast cancer invasion and metastasis. Cancer Res [Internet]. 2014 Jul 15;74(14):3764–78. Available from: http://cancerres.aacrjournals.org/cgi/doi/10.1158/0008-5472.CAN-13-3555
23. Huang W, Luo WJ, Zhu P, Tang J, Yu XL, Cui HY, et al. Modulation of CD147-induced matrix metalloproteinase activity: Role of CD147 N-glycosylation. Biochem J. 2013;449(2):437–48.
24. Liu J, Li J, Arnold K, Pawlinski R, Key NS. Using heparin molecules to manage COVID‐2019. Res Pract Thromb Haemost [Internet]. 2020 May 9;4(4):518–23. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/rth2.12353
25. Yang M. Cell Pyroptosis, a Potential Pathogenic Mechanism of 2019-nCoV Infection. SSRN Electron J [Internet]. 2020; Available from: https://www.ssrn.com/abstract=3527420
26. Fu Y, Cheng Y, Wu Y. Understanding SARS-CoV-2-Mediated Inflammatory Responses: From Mechanisms to Potential Therapeutic Tools. Virol Sin [Internet]. 2020;12250. Available from: https://doi.org/10.1007/s12250-020-00207-4
27. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506.
28. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA [Internet]. 2020 Mar 17;323(11):1061. Available from: https://jamanetwork.com/journals/jama/fullarticle/2761044
29. Leng Z, Zhu R, Hou W, Feng Y, Yang Y, Han Q, et al. Transplantation of ACE2- Mesenchymal stem cells improves the outcome of patients with covid-19 pneumonia. Aging Dis [Internet]. 2020;11(2):216–28. Available from: http://www.aginganddisease.org/EN/10.14336/AD.2020.0228
30. Jin Y, Yang H, Ji W, Wu W, Chen S, Zhang W, et al. Virology, epidemiology, pathogenesis, and control of covid-19. Viruses. 2020;12(4):1–17.
31. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘Cytokine Storm’’ in COVID-19.’ J Infect [Internet]. 2020 Apr;(January). Available from: https://linkinghub.elsevier.com/retrieve/pii/S0163445320301651
32. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med [Internet]. 2020;8(4):420–2. Available from: http://dx.doi.org/10.1016/S2213-2600(20)30076-X
33. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis [Internet]. 2020 Mar 12; Available from: https://academic.oup.com/cid/advance-article/doi/10.1093/cid/ciaa248/5803306
34. Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, et al. Reduction and Functional Exhaustion of T Cells in Patients with Coronavirus Disease 2019 (COVID-19). medRxiv. 2020;2020.02.18.20024364.
35. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and immunologic features in severe and moderate Coronavirus Disease 2019. J Clin Invest [Internet]. 2020 Apr 13;130(5):2620–9. Available from: https://www.jci.org/articles/view/137244
36. Zhou Y, Fu B, Zheng X, Wang D, Zhao C, qi Y, et al. Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients. Natl Sci Rev [Internet]. 2020 Mar 13; Available from: https://academic.oup.com/nsr/advance-article/doi/10.1093/nsr/nwaa041/5804736
37. Version T. Diagnosis and Treatment Plan for COVID-19 (Trial Version 6). Chin Med J (Engl) [Internet]. 2020 May;133(9):1087–95. Available from: http://journals.lww.com/10.1097/CM9.0000000000000819
38. Chizzolini C, Brembilla NC, Montanari E, Truchetet ME. Fibrosis and immune dysregulation in systemic sclerosis. Autoimmun Rev. 2011;10(5):276–81.
39. Falta MT, Bowerman NA, Dai S, Kappler JW, Fontenot AP. Linking genetic susceptibility and T cell activation in beryllium-induced disease. Proc Am Thorac Soc. 2010;7(2):126–9.
40. Niedermeier M, Reich B, Gomez MR, Denzel A, Schmidbauer K, Göbel N, et al. CD4+ T cells control the differentiation of Gr1+ monocytes into fibrocytes. Proc Natl Acad Sci U S A. 2009;106(42):17892–7.
41. Parra ER, Kairalla RA, Ribeiro De Carvalho CR, Eher E, Capelozzi VL. Inflammatory cell phenotyping of the pulmonary interstitium in idiopathic interstitial pneumonia. Respiration. 2007;74(2):159–69.
42. Papiris SA, Kollintza A, Kitsanta P, Kapotsis G, Karatza M, Milic-Emili J, et al. Relationship of BAL and lung tissue CD4+ and CD8+ T lymphocytes, and their ratio in idiopathic pulmonary fibrosis. Chest. 2005;128(4):2971–7.
43. Gilani SR, Vuga LJ, Lindell KO, Gibson KF, Xue J, Kaminski N, et al. CD28 down-regulation on circulating CD4 T-cells is associated with poor prognoses of patients with idiopathic pulmonary fibrosis. PLoS One. 2010;5(1):e8959.
44. Huaux F, Liu T, McGarry B, Ullenbruch M, Xing Z, Phan SH. Eosinophils and T Lymphocytes Possess Distinct Roles in Bleomycin-Induced Lung Injury and Fibrosis. J Immunol. 2003;171(10):5470–81.
45. Yamauchi K, Kasuya Y, Kuroda F, Tanaka K, Tsuyusaki J, Ishizaki S, et al. Attenuation of lung inflammation and fibrosis in CD69-deficient mice after intratracheal bleomycin. Respir Res. 2011;12(1):545– 555.
46. Sprokholt JK, Kaptein TM, van Hamme JL, Overmars RJ, Gringhuis SI, Geijtenbeek TBH. RIG-I–like Receptor Triggering by Dengue Virus Drives Dendritic Cell Immune Activation and T H 1 Differentiation . J Immunol [Internet]. 2017 Jun 15;198(12):4764–71. Available from: http://www.jimmunol.org/lookup/doi/10.4049/jimmunol.1602121
47. De Wit E, Van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: Recent insights into emerging coronaviruses. Nat Rev Microbiol [Internet]. 2016 Aug 27;14(8):523–34. Available from: http://www.nature.com/articles/nrmicro.2016.81
48. Wawrusiewicz-Kurylonek N, Gościk J, Chorąży M, Siewko K, Posmyk R, Zajkowska A, et al. The interferon-induced helicase C domain-containing protein 1 gene variant (rs1990760) as an autoimmune-based pathology susceptibility factor. Immunobiology [Internet]. 2020 Jan;225(1):151864. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0171298519303419
49. Gorman JA, Hundhausen C, Errett JS, Stone AE, Allenspach EJ, Ge Y, et al. The A946T variant of the RNA sensor IFIH1 mediates an interferon program that limits viral infection but increases the risk for autoimmunity. Nat Immunol [Internet]. 2017 Jul 29;18(7):744–52. Available from: http://www.nature.com/articles/ni.3766
50. Maiti AK. The African-American population with a low allele frequency of SNP rs1990760 (T allele) in IFIH1 predicts less IFN-beta expression and potential vulnerability to COVID-19 infection. Immunogenetics [Internet]. 2020 Jul 31; Available from: http://link.springer.com/10.1007/s00251-020-01174-6
51. Zhu Z, Homer RJ, Wang Z, Chen Q, Geba GP, Wang J, et al. Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest. 1999;103(6):779–88.
52. Schön MP, Berking C, Biedermann T, Buhl T, Erpenbeck L, Eyerich K, et al. COVID-19 and immunological regulations – from basic and translational aspects to clinical implications. JDDG - J Ger Soc Dermatology [Internet]. 2020 Aug 6;18(8):795–807. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/ddg.14169
53. Tanaka K, Yamamoto-Fukuda M, Takizawa T, Shimakura H, Sakaguchi M. Association analysis of non-synonymous polymorphisms of interleukin-4 receptor-α and interleukin-13 genes in canine atopic dermatitis. J Vet Med Sci [Internet]. 2020; Available from: https://www.jstage.jst.go.jp/article/jvms/advpub/0/advpub_20-0301/_article
54. Zheng Y, Chai L, Fan Y, Song YQ, Zee KY, Tu WW, et al. Th2 cell regulatory and effector molecules single nucleotide polymorphisms and periodontitis. J Leukoc Biol [Internet]. 2020 Aug 3;JLB.4MA0720-698RR. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/JLB.4MA0720-698RR
55. Aarafi H, Yadegari A, Dastgheib SA, Bahrami R, Shajari A, Nafei Z, et al. Association of +1923C > T, -1112C > T and +2044A > G Polymorphisms in IL-13 Gene with Susceptibility to Pediatric Asthma: A Systematic Review and Meta-Analysis. Fetal Pediatr Pathol [Internet]. 2020 Jul 8;1–19. Available from: https://www.tandfonline.com/doi/full/10.1080/15513815.2020.1783406
56. Patruno C, Stingeni L, Fabbrocini G, Hansel K, Napolitano M. Dupilumab and COVID-19: what should we expect? Dermatol Ther [Internet]. 2020 May 20; Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/dth.13502
57. Pacha O, Sallman MA, Evans SE. COVID-19: a case for inhibiting IL-17? Nat Rev Immunol [Internet]. 2020 Jun 1;20(6):345–6. Available from: http://www.nature.com/articles/s41577-020-0328-z
58. Feng W, Li W, Liu W, Wang F, Li Y, Yan W. IL-17 induces myocardial fibrosis and enhances RANKL/OPG and MMP/TIMP signaling in isoproterenol-induced heart failure. Exp Mol Pathol. 2009;87(3):212–8.
59. Meng F, Wang K, Aoyama T, Grivennikov SI, Paik Y, Scholten D, et al. Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology. 2012;143(3):765–776.e1–3.
60. Molet S, Hamid Q, Davoine F, Nutku E, Taha R, Pagé N, et al. IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. J Allergy Clin Immunol. 2001;108(3):430–8.
61. Numasaki M, Lotze MT, Sasaki H. Interleukin-17 augments tumor necrosis factor-α-induced elaboration of proangiogenic factors from fibroblasts. Immunol Lett. 2004;93(1):39–43.
62. Lo Re S, Dumoutier L, Couillin I, Van Vyve C, Yakoub Y, Uwambayinema F, et al. IL-17A–Producing γδ T and Th17 Lymphocytes Mediate Lung Inflammation but Not Fibrosis in Experimental Silicosis. J Immunol. 2010;184(11):6367–77.
63. Mi S, Li Z, Yang H-Z, Liu H, Wang J-P, Ma Y-G, et al. Correction: Blocking IL-17A Promotes the Resolution of Pulmonary Inflammation and Fibrosis Via TGF-β1–Dependent and –Independent Mechanisms. J Immunol. 2014;193(10):5345–6.
64. Bellini A, Marini MA, Bianchetti L, Barczyk M, Schmidt M, Mattoli S. Interleukin (IL)-4, IL-13, and IL-17A differentially affect the profibrotic and proinflammatory functions of fibrocytes from asthmatic patients. Mucosal Immunol. 2012;5(2):140–9.
65. Korytina GF, Akhmadishina LZ, Kochetova O V., Aznabaeva YG, Zagidullin SZ, Victorova T V. Inflammatory and Immune Response Genes Polymorphisms are Associated with Susceptibility to Chronic Obstructive Pulmonary Disease in Tatars Population from Russia. Biochem Genet [Internet]. 2016 Aug 22;54(4):388–412. Available from: http://link.springer.com/10.1007/s10528-016-9726-0
66. Xie M, Cheng B, Ding Y, Wang C, Chen J. Correlations of IL-17 and NF-κB gene polymorphisms with susceptibility and prognosis in acute respiratory distress syndrome in a Chinese population. Biosci Rep [Internet]. 2019 Feb 28;39(2). Available from: https://portlandpress.com/bioscirep/article/doi/10.1042/BSR20181987/110895/Correlations-of-IL17-and-NFκB-gene-polymorphisms
67. Kumar P, Rajasekaran K, Palmer JM, Thakar MS, Malarkannan S. IL-22: An evolutionary missing-link authenticating the role of the immune system in tissue regeneration. J Cancer [Internet]. 2013;4(1):57–65. Available from: http://www.jcancer.org/v04p0057.htm
68. Eyerich S, Eyerich K, Pennino D, Carbone T, Nasorri F, Pallotta S, et al. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J Clin Invest. 2009;119(12):3573–85.
69. Gómez-Fernández P, Lopez de Lapuente Portilla A, Astobiza I, Mena J, Urtasun A, Altmann V, et al. The Rare IL22RA2 Signal Peptide Coding Variant rs28385692 Decreases Secretion of IL-22BP Isoform-1, -2 and -3 and Is Associated with Risk for Multiple Sclerosis. Cells [Internet]. 2020 Jan 10;9(1):175. Available from: https://www.mdpi.com/2073-4409/9/1/175
70. Wang R, Zeng YL, Qin HM, Lu YL, Huang HT, Lei M, et al. Association of interleukin 22 gene polymorphisms and serum IL-22 level with risk of systemic lupus erythematosus in a Chinese population. Clin Exp Immunol [Internet]. 2018 Aug;193(2):143–51. Available from: http://doi.wiley.com/10.1111/cei.13133
71. Gasse P, Riteau N, Vacher R, Michel ML, Fautrel A, di Padova F, et al. IL-1 and IL-23 mediate early IL-17A production in pulmonary inflammation leading to late fibrosis. PLoS One. 2011;6(8):e23185.
72. Oh K, Park HB, Byoun OJ, Shin DM, Jeong EM, Kim YW, et al. Epithelial transglutaminase 2 is needed for T cell interleukin-17 production and subsequent pulmonary inflammation and fibrosis in bleomycin-treated mice. J Exp Med. 2011;208(18):1707–19.
73. Paget C, Ivanov S, Fontaine J, Renneson J, Blanc F, Pichavant M, et al. Interleukin-22 is produced by invariant natural killer T lymphocytes during influenza A virus infection: Potential role in protection against lung epithelial damages. J Biol Chem. 2012;287(12):8816–29.
74. Re S Lo, Lecocq M, Uwambayinema F, Yakoub Y, Delos M, Demoulin JB, et al. Platelet-derived growth factor-producing CD4 + foxp3 +regulatory T lymphocytes promote lung fibrosis. Am J Respir Crit Care Med. 2011;184(11):1270–81.
75. Zeng M, Smith AJ, Wietgrefe SW, Southern PJ, Schacker TW, Reilly CS, et al. Cumulative mechanisms of lymphoid tissue fibrosis and T cell depletion in HIV-1 and SIV infections. J Clin Invest. 2011;121(3):998–1008.
76. Kurasawa, K., Hirose, K., Sano, H., Endo, H., Shinkai, H., Nawata Y, Takabayashi, K., Iwamoto I. Increased interleukin-17 production in patients with systemic sclerosis. Arthritis Rheum. 2000;43:2455–2463.
77. Uchida K, Kusuda T, Koyabu M, Miyoshi H, Fukata N, Sumimoto K, et al. Regulatory T cells in Type 1 autoimmune pancreatitis. Int J Rheumatol. 2012;2012:795026.
78. Rappl G, Pabst S, Riemann D, Schmidt A, Wickenhauser C, Schütte W, et al. Regulatory T cells with reduced repressor capacities are extensively amplified in pulmonary sarcoid lesions and sustain granuloma formation. Clin Immunol. 2011;140(1):71–83.
79. Feghali-Bostwick CA, Tsai CG, Valentine VG, Kantrow S, Stoner MW, Pilewski JM, et al. Cellular and Humoral Autoreactivity in Idiopathic Pulmonary Fibrosis. J Immunol. 2007;179(4):2592–9.
80. Kotsianidis I, Nakou E, Bouchliou I, Tzouvelekis A, Spanoudakis E, Steiropoulos P, et al. Global impairment of CD4+CD25+FOXP3+ regulatory T cells in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2009;179(12):1121–30.
81. Hayashi H, Miura Y, Maeda M, Murakami S, Kumagai N, Nishimura Y, et al. Reductive alteration of the regulatory function of the CD4(+)CD25(+) T cell fraction in silicosis patients. Int J Immunopathol Pharmacol. 2010;23(4):1099–109.
82. Meyer NJ, Christie JD. Genetic heterogeneity and risk of acute respiratory distress syndrome. Semin Respir Crit Care Med [Internet]. 2013 Aug 11;34(4):459–74. Available from: http://www.thieme-connect.de/DOI/DOI?10.1055/s-0033-1351121
Рецензия
Для цитирования:
Головкин А.С., Кудрявцев И.В., Дмитриев А.В., Калинина О.В. Фиброзные изменения сердечно-сосудистой и дыхательной систем после перенесенной COVID-19: вклад факторов иммунной системы и генетическая предрасположенность. Российский кардиологический журнал. 2020;25(10):4087.
For citation:
Golovkin A.S., Kudryavtsev I.V., Dmitriev A.V., Kalinina O.V. Fibrosis of the cardiovascular and respiratory systems after suffering COVID-19: the contribution of immune system factors and genetic predisposition. Russian Journal of Cardiology. 2020;25(10):4087. (In Russ.)