Preview

Российский кардиологический журнал

Расширенный поиск

Терапия внеклеточными везикулами: возможности, механизмы и перспективы применения

https://doi.org/10.15829/1560-4071-2020-4081

Аннотация

Внеклеточные везикулы – биологические мембранные объекты, имеющие размеры менее 1000 нм, транспортирующие многие биологически активные молекулы (белки, микроРНК, мРНК, ДНК и т.д.), а также способные выполнять многие биологические функции и обеспечивать межклеточные взаимодействия. В настоящее время активно изучаются возможности их терапевтического применения при различных патологических состояниях и заболеваниях. В большинстве случаев в качестве клеточного источника внеклеточных везикул рассматриваются мезенхимальные стволовые клетки, а реализуемые терапевтические эффекты связывают с переносимыми микроРНК. В in vitro исследованиях показано, что внутриклеточные везикулы могут стимулировать регенерацию и ангиогенез, оказывать противовоспалительное, противоапоптотическое действие. Проводимые исследования, рассмотренные и структурированные нами в данном обзоре, демонстируют перспективы клинического применения внеклеточных везикул в терапии таких патологических состояний как окислительный стресс, ишемическое и реперфузионное повреждение тканей и органов, опухолевый рост и т.д.

Об авторах

Ф. С. Великонивцев
Национальный медицинский исследовательский центр им. В.А. Алмазова
Россия

Федор Сергеевич Великонивцев — студент Института Медицинского образования Центра Алмазова

ResearcherID: AAY-4886-2020

Санкт-Петербург



А. С. Головкин
Национальный медицинский исследовательский центр им. В.А. Алмазова
Россия

Алексей Сергеевич Головкин — руководитель группы генно-клеточной инженерии Института молекулярной биологии и генетики,

ResearcherID: I-2583-2014

Санкт-Петербург



Список литературы

1. Yuana Y, Sturk A, Nieuwland R. Extracellular vesicles in physiological and pathological conditions. Blood Rev. 2013;27(1):31–9. doi: 10.1016/j.blre.2012.12.002

2. El Harane N, Kervadec A, Bellamy V, Pidial L, Neametalla HJ, Perier MC, et al. Acellular therapeutic approach for heart failure: In vitro production of extracellular vesicles from human cardiovascular progenitors. Eur Heart J. 2018;39(20):1835–47. doi: 10.1093/eurheartj/ehy012

3. Barile L, Lionetti V, Cervio E, Matteucci M, Gherghiceanu M, Popescu LM, et al. Extracellular vesicles fromhuman cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function aftermyocardial infarction. Cardiovasc Res. 2014;103(4):530–41. doi: 10.1093/cvr/cvu167

4. Bian S, Zhang L, Duan L, Wang X, Min Y, Yu H. Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. J Mol Med. 2014;92(4):387–97. doi: 10.1007/s00109-013-1110-5

5. Ma J, Zhao Y, Sun L, Sun X, Zhao X, Sun X, et al. Exosomes Derived from Akt -Modified Human Umbilical Cord Mesenchymal Stem Cells Improve Cardiac Regeneration and Promote Angiogenesis via Activating Platelet-Derived Growth Factor D . Stem Cells Transl Med. 2017;6(1):51–9. doi: 10.5966/sctm.2016-0038

6. Zhu LP, Tian T, Wang JY, He JN, Chen T, Pan M, et al. Hypoxia-elicited mesenchymal stem cell-derived exosomes facilitates cardiac repair through miR-125b-mediated prevention of cell death in myocardial infarction. Theranostics. 2018;8(22):6163–77. doi: 10.7150/thno.28021

7. Deng S, zhou X, Ge Z, Song Y, Wang H, Liu X, et al. Exosomes from adipose-derived mesenchymal stem cells ameliorate cardiac damage after myocardial infarction by activating S1P/SK1/S1PR1 signaling and promoting macrophage M2 polarization. Int J Biochem Cell Biol. 2019;114(May):105564. doi: 10.1016/j.biocel.2019.105564

8. Eguchi S, Takefuji M, Sakaguchi T, Ishihama S, Mori Y, Tsuda T, et al. Cardiomyocytes capture stem cell-derived, anti-apoptotic microRNA-214 via clathrin-mediated endocytosis in acute myocardial infarction. J Biol Chem. 2019;294(31):11665–74. doi: 10.1074/jbc.RA119.007537

9. Ni J, Liu X, Yin Y, Zhang P, Xu YW, Liu Z. Exosomes derived from TIMP2-modified human umbilical cord mesenchymal stem cells enhance the repair effect in rat model with myocardial infarction possibly by the Akt/ SFRP2 pathway. Oxid Med Cell Longev. 2019;2019. doi: 10.1155/2019/1958941

10. Zhao J, Li X, Hu J, Chen F, Qiao S, Sun X, et al. Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization. Cardiovasc Res. 2019 Jun;115(7):1205–16. doi: 10.1093/cvr/cvz040

11. Sun XH, Wang X, Zhang Y, Hui J. Exosomes of bone-marrow stromal cells inhibit cardiomyocyte apoptosis under ischemic and hypoxic conditions via miR-486-5p targeting the PTEN/PI3K/AKT signaling pathway. Thromb Res. 2019;177:23–32. doi: 10.1016/j.thromres.2019.02.002

12. Song Y, Li Z, He T, Qu M, Jiang L, Li W, et al. M2 microglia-derived exosomes protect the mouse brain from ischemia-reperfusion injury via exosomal miR-124. Theranostics. 2019;9(10):2910–23. doi: 10.7150/thno.30879

13. Wang B, Wu ZH, Lou PY, Chai C, Han SY, Ning JF, et al. Human bone marrow-derived mesenchymal stem cell-secreted exosomes overexpressing microRNA-34a ameliorate glioblastoma development via down-regulating MYCN. Cell Oncol. 2019;42(6):783–99. doi: 10.1007/s13402-019-00461-z

14. Bai L, Liu Y, Guo K, Zhang K, Liu Q, Wang P, et al. Ultrasound Facilitates Naturally Equipped Exosomes Derived from Macrophages and Blood Serum for Orthotopic Glioma Treatment. ACS Appl Mater Interfaces. 2019 Apr;11(16):14576–87. doi: 10.1021/acsami.9b00893

15. Wang F, Li L, Piontek K, Sakaguchi M, Selaru FM. Exosome miR-335 as a novel therapeutic strategy in hepatocellular carcinoma. Hepatology. 2018;67(3):940–54. doi: 10.1002/hep.29586

16. Brossa A, Fonsato V, Grange C, Tritta S, Tapparo M, Calvetti R, et al. Extracellular vesicles from human liver stem cells inhibit renal cancer stem cell‐derived tumor growth in vitro and in vivo . Int J Cancer. 2020;1–13. doi: 10.1002/ijc.32925

17. Ding Y, Cao F, Sun H, Wang Y, Liu S, Wu Y, et al. Exosomes derived from human umbilical cord mesenchymal stromal cells deliver exogenous miR-145-5p to inhibit pancreatic ductal adenocarcinoma progression. Cancer Lett. 2019 Feb;442:351–61. doi: 10.1016/j.canlet.2018.10.039

18. Ding J, Wang X, Chen B, Zhang J, Xu J. Exosomes Derived from Human Bone Marrow Mesenchymal Stem Cells Stimulated by Deferoxamine Accelerate Cutaneous Wound Healing by Promoting Angiogenesis. Biomed Res Int. 2019;2019. doi: 10.1155/2019/9742765

19. Zhang W, Wang Y, Kong Y. Exosomes derived from mesenchymal stem cells modulate miR-126 to ameliorate hyperglycemia-induced retinal inflammation via targeting HMGB1. Investig Ophthalmol Vis Sci. 2019;60(1):294–303. doi: 10.1167/iovs.18-25617

20. Grange C, Tritta S, Tapparo M, Cedrino M, Tetta C, Camussi G, et al. Stem cell-derived extracellular vesicles inhibit and revert fibrosis progression in a mouse model of diabetic nephropathy. Sci Rep. 2019; doi: 10.1038/s41598-019-41100-9

21. Takeuchi R, Katagiri W, Endo S, Kobayashi T. Exosomes from conditioned media of bone marrow-derived mesenchymal stem cells promote bone regeneration by enhancing angiogenesis. PLoS One. 2019;14(11):1–19. doi: 10.1371/journal.pone.0225472

22. Otsuru S, Desbourdes L, Guess AJ, Hofmann TJ, Relation T, Kaito T, et al. Extracellular vesicles released from mesenchymal stromal cells stimulate bone growth in osteogenesis imperfecta. Cytotherapy. 2018;20(1):62–73. doi: 10.1016/j.jcyt.2017.09.012

23. Narayanan R, Huang CC, Ravindran S. Hijacking the Cellular Mail: Exosome Mediated Differentiation of Mesenchymal Stem Cells. Stem Cells Int. 2016;2016(March). doi: 10.1155/2016/3808674

24. Qin Y, Wang L, Gao Z, Chen G, Zhang C. Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo. Sci Rep. 2016 Feb;6. doi: 10.1038/srep21961

25. Li T, Yan Y, Wang B, Qian H, Zhang X, Shen L, et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev. 2013 Mar;22(6):845–54. doi: 10.1089/scd.2012.0395

26. Zhang S, Jiang L, Hu H, Wang H, Wang X, Jiang J, et al. Pretreatment of exosomes derived from hUCMSCs with TNF-α ameliorates acute liver failure by inhibiting the activation of NLRP3 in macrophage. Life Sci. 2020;246(January):117401. doi: 10.1016/j.lfs.2020.117401

27. Jiang L, Zhang S, Hu H, Yang J, Wang XY, Ma Y, et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate acute liver failure by reducing the activity of the NLRP3 inflammasome in macrophages. Biochem Biophys Res Commun. 2019;508(3):735–41. doi: 10.1016/j.bbrc.2018.11.189

28. Zhang S, Liu X, Ge LL, Li K, Sun Y, Wang F, et al. Mesenchymal stromal cell-derived exosomes improve pulmonary hypertension through inhibition of pulmonary vascular remodeling. Respir Res. 2020;21(1):1–12. doi: 10.1186/s12931-020-1331-4

29. Yi X, Wei X, Lv H, An Y, Li L, Lu P, et al. Exosomes derived from microRNA-30b-3p-overexpressing mesenchymal stem cells protect against lipopolysaccharide-induced acute lung injury by inhibiting SAA3. Exp Cell Res. 2019 Oct;383(2):111454. doi: 10.1016/j.yexcr.2019.05.035

30. Riazifar M, Mohammadi MR, Pone EJ, Yeri A, Lasser C, Segaliny AI, et al. Stem Cell-Derived Exosomes as Nanotherapeutics for Autoimmune and Neurodegenerative Disorders. ACS Nano. 2019;13(6):6670–88. doi: 10.1021/acsnano.9b01004

31. Laso-García F, Ramos-Cejudo J, Carrillo-Salinas FJ, Otero-Ortega L, Feliú A, Gómez-de Frutos MC, et al. Therapeutic potential of extracellular vesicles derived from human mesenchymal stem cells in a model of progressive multiple sclerosis. PLoS One. 2018;13(9):1–16. doi: 10.1371/journal.pone.0202590

32. Zhang Y, Chopp M, Zhang ZG, Katakowski M, Xin H, Qu C, et al. Systemic administration of cell-free exosomes generated by human bone marrow derived mesenchymal stem cells cultured under 2D and 3D conditions improves functional recovery in rats after traumatic brain injury. Neurochem Int. 2017;111:69–81. doi: 10.1016/j.neuint.2016.08.003

33. Thomi G, Surbek D, Haesler V, Joerger-Messerli M, Schoeberlein A. Exosomes derived from umbilical cord mesenchymal stem cells reduce microglia-mediated neuroinflammation in perinatal brain injury. Stem Cell Res Ther. 2019 Mar;10(1). doi: 10.1186/s13287-019-1207-z

34. Kang J, Li Z, Zhi Z, Wang S, Xu G. MiR-21 derived from the exosomes of MSCs regulates the death and differentiation of neurons in patients with spinal cord injury. Gene Ther. 2019;26(12):491–503. doi: 10.1038/s41434-019-0101-8

35. Chen J, Ren S, Duscher D, Kang Y, Liu Y, Wang C, et al. Exosomes from human adipose-derived stem cells promote sciatic nerve regeneration via optimizing Schwann cell function. J Cell Physiol. 2019;234(12):23097–110. doi: 10.1002/jcp.28873

36. Fang S, Xu C, Zhang Y, Xue C, Yang C, Bi H, et al. Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomal MicroRNAs Suppress Myofibroblast Differentiation by Inhibiting the Transforming Growth Factor-β/SMAD2 Pathway During Wound Healing. Stem Cells Transl Med. 2016 Oct;5(10):1425–39. doi: 10.5966/sctm.2015-0367

37. Ren S, Chen J, Duscher D, Liu Y, Guo G, Kang Y, et al. Microvesicles from human adipose stem cells promote wound healing by optimizing cellular functions via AKT and ERK signaling pathways. Stem Cell Res Ther. 2019 Jan;10(1). doi: 10.1186/s13287-019-1152-x

38. Bian B, Zhao C, He X, Gong Y, Ren C, Ge L, et al. Exosomes derived from neural progenitor cells preserve photoreceptors during retinal degeneration by inactivating microglia. J Extracell Vesicles. 2020;9(1). doi: 10.1080/20013078.2020.1748931

39. Wang D, Gao B, Yue J, Liu F, Liu Y, Fu W, et al. Exosomes from mesenchymal stem cells expressing miR-125b inhibit neointimal hyperplasia via myosin IE. J Cell Mol Med. 2019 Feb;23(2):1528–40. doi: 10.1111/jcmm.14060

40. Qu Q, Pang Y, Zhang C, Liu L, Bi Y. Exosomes derived from human umbilical cord mesenchymal stem cells inhibit vein graft intimal hyperplasia and accelerate reendothelialization by enhancing endothelial function. Stem Cell Res Ther. 2020;11(1):1–14. doi: 10.1186/s13287-020-01639-1

41. Willis GR, Fernandez-Gonzalez A, Anastas J, Vitali SH, Liu X, Ericsson M, et al. Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation. Am J Respir Crit Care Med. 2018;197(1):104–16. doi: 10.1164/rccm.201705-0925OC

42. Woo CH, Kim HK, Jung GY, Jung YJ, Lee KS, Yun YE, et al. Small extracellular vesicles from human adipose-derived stem cells attenuate cartilage degeneration. J Extracell Vesicles [Internet]. 2020;9(1). doi: 10.1080/20013078.2020.1735249

43. Zhu D, Tian J, Wu X, Li M, Tang X, Rui K, et al. G-MDSC-derived exosomes attenuate collagen-induced arthritis by impairing Th1 and Th17 cell responses. Biochim Biophys Acta - Mol Basis Dis. 2019 Dec;1865(12):165540. doi: 10.1016/j.bbadis.2019.165540

44. Chen L, Huang H, Zhang W, Ding F, Fan Z, Zeng Z. Exosomes derived from t regulatory cells suppress CD8+ cytotoxic t lymphocyte proliferation and prolong liver allograft survival. Med Sci Monit. 2019;25:4877–84. doi: 10.12659/MSM.917058

45. Zhou Y, Xu H, Xu W, Wang B, Wu H, Tao Y, et al. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther. 2013 Apr;4(2):34. doi: 10.1186/scrt194

46. Li Y, Wang F, Guo R, Zhang Y, Chen D, Li X, et al. Exosomal sphingosine 1-phosphate secreted by mesenchymal stem cells regulated Treg/Th17 balance in aplastic anemia. IUBMB Life. 2019 Sep;71(9):1284–92. doi: 10.1002/iub.2035

47. Ma ZJ, Wang YHY, Li ZG, Wang YHY, Li BY, Kang HY, et al. Immunosuppressive effect of exosomes from mesenchymal stromal cells in defined medium on experimental colitis. Int J Stem Cells. 2019 Nov;12(3):440–8. doi: 10.15283/ijsc18139

48. Johnson TK, Zhao L, Zhu D, Wang Y, Xiao Y, Oguljahan B, et al. Exosomes derived from induced vascular progenitor cells promote angiogenesis in vitro and in an in vivo rat hindlimb ischemia model. Am J Physiol - Hear Circ Physiol. 2019;317(4):H765–76. doi: 10.1152/ajpheart.00247.2019

49. Xiao J, Pan Y, Li XH, Yang XY, Feng YL, Tan HH, et al. Cardiac progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal miR-21 by targeting PDCD4. Cell Death Dis. 2016;7(6):1–10. doi: 10.1038/cddis.2016.181

50. Walker ND, Elias M, Guiro K, Bhatia R, Greco SJ, Bryan M, et al. Exosomes from differentially activated macrophages influence dormancy or resurgence of breast cancer cells within bone marrow stroma. Cell Death Dis. 2019 Feb;10(2). doi: 10.1038/s41419-019-1304-z

51. Wang Z, Zhu H, Shi H, Zhao H, Gao R, Weng X, et al. Exosomes derived from M1 macrophages aggravate neointimal hyperplasia following carotid artery injuries in mice through miR-222/CDKN1B/CDKN1C pathway. Cell Death Dis. 2019 Jun;10(6). doi: 10.1038/s41419-019-1667-1

52. Welch JL, Kaddour H, Winchester L, Fletcher C V., Stapleton JT, Okeoma CM. Semen Extracellular Vesicles from HIV-1-Infected Individuals Inhibit HIV-1 Replication in Vitro, and Extracellular Vesicles Carry Antiretroviral Drugs in Vivo. J Acquir Immune Defic Syndr. 2020;83(1):90–8. doi: 10.1097/QAI.0000000000002233

53. Lu K, Li H yin, Yang K, Wu J long, Cai X wei, Zhou Y, et al. Exosomes as potential alternatives to stem cell therapy for intervertebral disc degeneration: in-vitro study on exosomes in interaction of nucleus pulposus cells and bone marrow mesenchymal stem cells. Stem Cell Res Ther. 2017 May;8(1). doi: 10.1186/s13287-017-0563-9


Рецензия

Для цитирования:


Великонивцев Ф.С., Головкин А.С. Терапия внеклеточными везикулами: возможности, механизмы и перспективы применения. Российский кардиологический журнал. 2020;25(10):4081. https://doi.org/10.15829/1560-4071-2020-4081

For citation:


Velikonivtsev F.S., Golovkin A.S. Extracellular vesicles therapy: opportunities, mechanisms and perspectives. Russian Journal of Cardiology. 2020;25(10):4081. (In Russ.) https://doi.org/10.15829/1560-4071-2020-4081

Просмотров: 1331


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)