Anticardiac antibodies in patients with severe and moderate COVID-19 (correlations with the clinical performance and prognosis)
https://doi.org/10.15829/29/1560-4071-2020-4054
Abstract
The level and significance of anticardiac antibodies (ACA) in patients with COVID-19 infection have not yet been studied.
Aim. To assess the level of various ACA in patients with severe and moderate COVID-19 infection and to identify the correlation of antibody profile with the clinical performance and prognosis.
Material and methods. The study included 86 (38 women and 48 men) patients aged 20-90 years (60,2±16,6 years) who were hospitalized for moderate and severe COVID-19 infection in April-June 2020. Nasopharyngeal swab confirmed the disease in 59,3% of patients. In addition to the standard examination, electrocardiography and chest scan, level of antinuclear antibodies (ANA), antiendothelial cell antibodies (AECA), anti-cardiomyocyte antibodies, antibodies to anti-smooth muscles (ASMA) and cardiac conduction system fibers. Echocardiography was performed in 17 patients. Mean length of stay was 14 [12; 18] days. Death was considered as the primary endpoint.
Results. Prevalence of heart disease and symptoms (including hypertension and coronary artery disease) was 45,3%. The manifestations of coronavirus heart damage include arrhythmias (supraventricular premature beats, 3,6%; atrial fibrillation, 9,3%), heart failure (9,3%), low QRS voltage (11,4%), repolarization abnormalities (41,9%), pericardial effusion (30%). An increase in troponin levels was observed in low number of patients. All types of cardiovascular disease correlated with the maximum D-dimer level (AUC, 0,752, p<0,01). Titers of two or more types of ACA were increased by 3 or more times in 25 (73,5%) patients. Significant (p<0,05) correlations of ANA level with cardiovascular symptoms/diseases in general (r=0,459), anti-cardiomyocyte antibodies — with the prevalence of pneumonia (r=0,472), shortness of breath severity (r=0,370), respiratory failure (r=0,387), oxygen therapy (r=0,388) and mechanical ventilation (r=0,469), as well as the presence of chest pain (r=0,374), QRS voltage decrease (r=0,415), maximum level of CRP (r=0,360) and LDH (r=0,360). ANA and anti-cardiomyocyte antibody levels strongly correlated with pericardial effusion (r=0,721 and r=0,745, respectively, p<0,05). The mortality rate was 9,3%. Heart failure was one of the death causes in 37,5%. The level of anti-cardiomyocyte antibodies and ASMA correlated with mortality (r=0,363, and r=0,426, p<0,05) and had a predictive value. Mortality in patients with cardiovascular disease was 17,9%, without — 2,2% (p<0,05). The most powerful predictive model for COVID-19 adverse outcomes includes age, diabetes, oxygen therapy extent, maximum leukocyte, C-reactive protein and D-dimer levels. However, a model that includes only age, diabetes, and cardiovascular disease also has sufficient predictive power (correlation coefficient, 0,568, p<0,001).
Conclusion. An increase in ACA titers was detected in 73,5% of patients, correlated with mortality, in most cases reflects the general activity and severity of the disease and can be regarded as part of response in COVID-19. At the same time, a direct correlation with signs of myocardial damage, the presence and volume of pericardial effusion confirms the direct role of ACA in the development of myopericarditis.
Keywords
About the Authors
O. V. BlagovaRussian Federation
Moscow.
Competing Interests: No.
N. V. Varionchik
Russian Federation
Moscow.
Competing Interests: No.
V. A. Zaydenov
Russian Federation
Moscow.
Competing Interests: No.
P. O. Savina
Russian Federation
Moscow.
Competing Interests: No.
N. D. Sarkisova
Russian Federation
Moscow.
Competing Interests: No.
References
1. Mehta P, McAuley DF, Brown M, et al. On behalf of the HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033-4. doi:10.1016/S0140-6736(20)30628-0.
2. Caso F, Costa L, Ruscitti P, et al. Could Sars-coronavirus-2 trigger autoimmune and/or autoinflammatory mechanisms in genetically predisposed subjects? Autoimmun Rev. 2020;19(5):102524. doi:10.1016/j.autrev.2020.102524.
3. Hussain M, Jabeen N, Raza F, et al. Structural variations in human ACE2 may influence its binding with SARS-CoV-2 spike protein. J Med Virol. 2020;10.1002/jmv.25832. doi:10.1002/jmv.25832.
4. Java A, Apicelli AJ, Liszewski MK, et al. The complement system in COVID-19: friend and foe. JCI Insight. 2020;5(15):e140711. doi:10.1172/jci.insight.140711.
5. Wang W, Zhang W, Zhang J, et al. Distribution of HLA allele frequencies in 82 Chinese individuals with coronavirus disease-2019 (COVID-19). HLA. 2020;96(2):194-196. doi:10.1111/tan.13941.
6. Yousefzadegan S, Rezaei N. Case Report: Death due to COVID-19 in Three Brothers. Am J Trop Med Hyg. 2020;102(6):1203-4. doi:10.4269/ajtmh.20-0240.
7. Giamarellos-Bourboulis EJ, Netea MG, Rovina N, et al. Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure. Cell Host Microbe. 2020;27(6):992-1000.e3. doi:10.1016/j.chom.2020.04.009.
8. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi:10.1016/S0140-6736(20)30183-5.
9. Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020;71(15):762-768. doi:10.1093/cid/ciaa248.
10. Kogan EA, Berezovskiy YS, Blagova OV, et al. Miocarditis in Patients with COVID-19 Confirmed by Immunohistochemical study. Kardiologiia. 2020;60(7):4-10. (In Russ.) doi:10.18087/cardio.2020.7.n1209.
11. Li X, Wang L, Yan S, et al. Clinical characteristics of 25 death cases with COVID-19: A retrospective review of medical records in a single medical center, Wuhan, China. Int J Infect Dis. 2020;94:128-32. doi:10.1016/j.ijid.2020.03.053.
12. Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020;17(5):259-60. doi:10.1038/s41569-020-0360-5.
13. Van Linthout S, Klingel K, Tschope C. SARS-CoV-2-related myocarditis-like syndromes Shakespeare's question: what's in a name? Eur J Heart Fail. 2020;22(6):922-925. doi:10.1002/ejhf.1899.
14. Shi S, Qin M, Shen B, et al. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5(7):802-810. doi:10.1001/jamacardio.2020.0950.
15. Escher F, Pietsch H, Aleshcheva G, et al. Detection of viral SARS-CoV-2 genomes and histopathological changes in endomyocardial biopsies. ESC Heart Fail. 2020;7(5):2440-2447. doi:10.1002/ehf2.12805.
16. Wenzel P, Kopp S, Gobel S, et al. Evidence of SARS-CoV-2 mRNA in endomyocardial biopsies of patients with clinically suspected myocarditis tested negative for COVID-19 in nasopharyngeal swab. Cardiovasc Res. 2020;116(10):1661-1663. doi:10.1093/cvr/cvaa160.
17. Sala S, Peretto G, Gramegna M, et al. Acute Myocarditis Presenting as a Reverse Tako-Tsubo Syndrome in a Patient With SARS-CoV-2 Respiratory Infection. Eur Heart J. 2020;41(19):1861-2. doi:10.1093/eurheartj/ehaa286.
18. Paul JF, Charles P, Richaud C, et al. Myocarditis revealing COVID-19 infection in a young patient. Eur Heart J Cardiovasc Imaging. 2020;21(7):776. doi:10.1093/ehjci/jeaa107.
19. Wang D, Hu B, Hu C, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-9. doi:10.1001/jama.2020.1585.
20. Gopinathannair R, Merchant FM, Lakkireddy DR, et al. COVID-19 and cardiac arrhythmias: a global perspective on arrhythmia characteristics and management strategies. J Interv Card Electrophysiol. 2020;59(2):329-336. doi:10.1007/s10840-020-00789-9.
21. Kochav SM, Coromilas E, Nalbandian A, et al. Cardiac Arrhythmias in COVID-19 Infection. Circ Arrhythm Electrophysiol. 2020;13(6):e008719. doi:10.1161/CIRCEP.120.008719.
22. Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417-8. doi:10.1016/S0140-6736(20)30937-5.
23. Blagova OV, Nedostup AV, Kogan EA. Myocardial and pericardial diseases: from syndromes to diagnosis and treatment. M., “GEOTAR-Media”, 2019. 884 p. (In Russ.)
24. Ruan Q, Yang K, Wang W, et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46(5):846-8. doi:10.1007/s00134-020-05991-x.
25. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020;323(13):1239-1242. doi:10.1001/jama.2020.2648.
26. Yin S, Huang M, Li D, Tang N. Difference of coagulation features between severe pneumonia induced by SARS-CoV2 and non-SARS-CoV2. J Thromb Thrombolysis. 2020;1-4. doi:10.1007/s11239-020-02105-8.
27. Xu Y, Qian Y, Gu Q, et al. Relationship between D-dimer concentration and inflammatory factors or organ function in patients with coronavirus disease 2019. 2020;32(5):559-63. doi:10.3760/cma.j.cn121430-20200414-00518.
28. Zhang L, Yan X, Fan Q, et al. D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J Thromb Haemost. 2020;18(6):1324-29. doi:10.1111/jth.14859.
29. Leonard-Lorant I, Delabranche X, Severac F, et al. Acute Pulmonary Embolism in COVID-19 Patients on CT Angiography and Relationship to D-Dimer Levels. Radiology. 2020;296(3):E189-E191. doi:10.1148/radiol.2020201561.
30. Artifoni M, Danic G, Gautier G, et al. Systematic assessment of venous thromboembolism in COVID-19 patients receiving thromboprophylaxis: incidence and role of D-dimer as predictive factors. J Thromb Thrombolysis. 2020;50(1):211-6. doi:10.1007/s11239-020-02146-z.
31. Yao N, Wang SN, Lian JQ, et al. Clinical characteristics and influencing factors of patients with novel coronavirus pneumonia combined with liver injury in Shaanxi region. Zhonghua Gan Zang Bing Za Zhi. 2020;28(3):234-239. doi:10.3760/cma.j.cn501113-20200226-00070.
32. Ellul MA, Benjamin L, Singh B, et al. Neurological associations of COVID-19. Lancet Neurol. 2020;19(9):767-783. doi:10.1016/S1474-4422(20)30221-0.
33. Li M, Dong Y, Wang H, et al. Cardiovascular disease potentially contributes to the progression and poor prognosis of COVID-19. Nutr Metab Cardiovasc Dis. 2020;30(7):1061-7. doi:10.1016/j.numecd.2020.04.013.
34. Bangalore S, Sharma A, Slotwiner A, et al. ST-Segment Elevation in Patients with Covid-19 — A Case Series. N Engl J Med. 2020;382(25):2478-80. doi:10.1056/NEJMc2009020.
35. Escher R, Breakey N, Lammle B. Severe COVID-19 infection associated with endothelial activation. Thromb Res. 2020;190:62. doi:10.1016/j.thromres.2020.04.014.
Review
For citations:
Blagova O.V., Varionchik N.V., Zaydenov V.A., Savina P.O., Sarkisova N.D. Anticardiac antibodies in patients with severe and moderate COVID-19 (correlations with the clinical performance and prognosis). Russian Journal of Cardiology. 2020;25(11):4054. (In Russ.) https://doi.org/10.15829/29/1560-4071-2020-4054