Preview

Российский кардиологический журнал

Расширенный поиск

Некоторые про- и противовоспалительные цитокины, полиморфные варианты их генов и постинфарктное ремоделирование сердца

https://doi.org/10.15829/1560-4071-2020-4007

Полный текст:

Аннотация

Влияние молекулярно-генетических факторов на развитие сердечно-сосудистых заболеваний (ССЗ) уже на протяжении ряда лет является предметом активного изучения. У пациентов с острым инфарктом миокарда и сердечной недостаточностью в детерминации общего воспалительного фона и персистенции воспалительных медиаторов в миокарде очевидно наличие генетической компоненты. Генетический фон в комбинации с традиционными факторами риска ССЗ определяет характер клинического течения болезни, степень тяжести и ее исход. В настоящем обзоре обобщены данные ассоциативных исследований генов прои противовоспалительных цитокинов с ишемической болезнью сердца и ее клиническими проявлениями.

Об авторах

А. М. Николаева
Научно-исследовательский институт кардиологии, Томский национальный исследовательский медицинский центр Российской академии наук
Россия

Антонина Михайловна Николаева — аспирант отделения неотложной кардиологии

Томск



Н. П Бабушкина
Научно-исследовательский институт медицинской генетики, Томский национальный исследовательский медицинский центр Российской академии наук
Россия

Надежда Петровна Бабушкина — к.б.н., н.с. лаборатории популяционной генетики

Томск



В. В. Рябов
Научно-исследовательский институт кардиологии, Томский национальный исследовательский медицинский центр Российской академии наук; ФГАОУ ВО Национальный исследовательский Томский государственный университет; ГБОУ ВПО Сибирский государственный медицинский университет Минздрава России
Россия

Вячеслав Валерьевич Рябов — д.м.н., руководитель отделения неотложной кардиологии НИИ кардиологии; ведущий научный сотрудник лаборатории трансляционной клеточной и молекулярной биомедицины ТГУ; профессор кафедры кардиологии ФПК ППС СибГМУ

Томск



Список литературы

1. Ibanez B, James S, Agewall S, et al. 2017 ESC Guidelines for the management of acute coronary syndromes in patients presenting with ST-segment elevation. European Heart Journal. 2018;39(2):119-77. doi:10.1093/eurheartj/ehx393.

2. Daubert M, White J, Al-Khalidi H, et al. Cardiac remodeling after large ST-elevation myocardial infarction in the current therapeutic era. American Heart Journal. 2020;223:8797. doi:10.1016/j.ahj.2020.02.017.

3. Zarrouk-Mahjoub S, Zagdoudi M, Amira Z, et al. Proand anti-inflammatory cytokines in post infarction left ventricular remodeling. International Journal of Cardiology. 2016;221:632-6. doi:10.1016/j.ijcard.2016.07.073.

4. Mouton A, Rivera O, Lindsay M. Myocardial infarction remodeling that progression to heart failure: a signaling misunderstanding. American Journal of Physiology-Heart and Circulatory Physiology. 2018;315(1):71-9. doi:10.1152/ajpheart.00131.2018.

5. Frangogiannis NG. The inflammatory response in myocardial injury, repair, and remodeling. Nature Reviews Cardiology. 2014;11:255-65. doi:10.1038/nrcardio.2014.28.

6. Azevedo P, Poletago B, Minicucci M. Cardiac remodeling: concepts, clinical impact, pathophysiological mechanisms and pharmacologic treatment. Arquivos Brasileiros de Cardiologia. 2016;106(1):62-9. doi:10.5935/abc.20160005.

7. Tomoaia R, Beyer RS, Simu G, et al. Understanding the role of echocardiography in remodeling after myocardial infarction and development of heart failure with preserved ejection fraction. Medical Ultrasonography. 2019;21(1):69-76. doi:10.11152/mu-1768.

8. Bhatt A, Ambrosy A, Velazquez E. Adverse remodeling and reverse remodeling after myocardial infarction. Current Cardiology Reports. 2017;19(71). doi:10.1007/s11886-017-0876-4.

9. Chen D, Frangogiannis NG. Immune cell in repair of the infarcted myocardium. Microcirculation. 2017;24(1):e12305. doi:10.1111/micc.12305.

10. Frangogiannis NG. Cell biological mechanisms in regulation of the post-infarction inflammatory response. Current Opinion in Physiology. 2018;1:7-13. doi:10.1016/j. cophys.2017.09.001.

11. Ong S-B, Hernandez-Resendiz S, Gustavo E, et al. Inflammation following acute myocardial infarction: Multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacology & Therapeutics. 2018;(186):73-87. doi:10.1016/j.pharmthera.2018.01.001.

12. Yan W, Abu-El-Rub E, Saravanan S, et al. Inflammation in myocardial injury: mesenchymal stem as potential immunomodulators. American Journal of Physiology. 2019;317(2):21325. doi:10.1152/ajpheart.00065.2019.

13. Коненков В. И., Шевченко В. Ф., Прокофьев В. Н. и др. Ассоциированность комбинированных генотипов полиморфных участков генов цитокинов, факторв роста сосудистого эндотелия и металлопротеиназ с развитием инфаркта миокарда у мужчин. Российский кардиологический журнал. 2014;(10):34-9. doi:10.15829/15604071-2014-10-34-39.

14. Bennermo M, Nordin M, Lundman P, et al. Genetic and environmental influences on the plasma interleukin-6 concentration in patients with a recent myocardial infarction: a casecontrol study. Journal of Interferon & Cytokine Research. 2011;31(2):259-64. doi:10.1089/jir.2010.0036.

15. Buraczynska M, Zukovski R, Drop D, et al. Effect of G(-174)C polymorphism in interleukin-6 gene on cardiovascular disease in type 2 diabetes patients. Cytokine. 2016;79:7-11. doi:10.1016/j.cyto.2015.12.004.

16. Jin Y, Wang Q, Wang G, et al. Common polymorphism in the interleukin-6 gene and myocardial infarction risk: a meta-analysis. Genetic testing and molecular biomarkers. 2014;18(5):330-40. doi:10.1089/gtmb.2013.0404.

17. Olivieri F, Antonicelli R, Cardelli M, et al. Genetic polymorphism of inflammatory cytokines and myocardial infarction in the elderly. Mechanisms of Ageing and Development. 2008;127(6):552-9. doi:10.1016/j.mad.2006.01.013.

18. Zhou J, Feng J, Li X. Association between the -174 G/C polymorphism of the interleukin-6 gene and myocardial infarction risk: a meta-analysis. Genet Mol Res. 2016;15(3). doi:10.4238/gmr.15038358.

19. Vakili H, Hossein Ghadeian SM, et al. Genetic polymorphism of inerleukin-6 gene and susceptibility to acute myocardial infarction. Coronary Artery Disease. 2011;(22):299-305. doi:10.1097/mca.0b013e328346b848.

20. Smith A-JP, Humphries SE. Cytokine and cytokine receptor gene polymorphisms and their functionality. Cytokine & Growth Factor Reviews. 2009;20:43-59. doi:10.1016/j.cytogfr.2008.11.006.

21. Biswas S, Ghoshal PK, Mandal N. Synergistic effect of anti and pro-inflammatory cytokine genes and their promoter polymorphism with ST-elevation of myocardial infarction. Gene. 2014;544:145-51. doi:10.1016/j.gene.2014.04.065.

22. Mishra A, Srivastava A, Mittal T, et al. Role of inflammatory gene polymorphisms in left ventricular dysfunction (LVD) susceptibility in coronary artery disease patients. Cytokines. 2013;61:856-61. doi:10.1016/j.cyto.2012.12.020.

23. Tian M, Yuan Yu-Ch, Li J-Y, et al. Tumor necrosis factor-α and its role as a mediator in myocardial infarction: A brief review. Chronic Disease and Translational Medicine. 2015;1(1):18-26. doi:10.1016/j.cdtm.2015.02.002.

24. Cho H-Ch, Yu G, Lee M-Yu, et al. TNF-α polymorphism and coronary artery disease; association study in the Korean population. Cytokine. 2013;62:104-9. doi:10.1016/j.cyto.2013.02.008.

25. Kumari R, Kumar S, Ahmad MK, et al. Promoter variants of TNF-α rs1800629 and IL-10 rs1800871 are independently associated with the susceptibility of coronary artery disease in north Indian. Cytokine. 2018;110:131-6. doi:10.1016/j.cyto.2018.04.035.

26. Hua XP, Qian J, Cao CB, et al. Association between the TNF-α rs1800629 polymorphism and the risk of myocardial infarction: a meta-analysis. Genetics Molecular Research. 2016;15(3):gmr.15037292. doi:10.4238/gmr.15037292.

27. Pulido-Gomez K, Hernandez-Diaz Y, Tovilla-Zárate CA, et al. Association of G308A and G238A polymorphisms of the TNF-α gene with risk of coronary heart disease: systemic review and meta-analysis. Archive of Medical Research. 2016;47(7):557-72. doi:10.1016/j.arcmed.2016.11.006.

28. Zeybek U, Toptas B, Karaali ZE, et al. Effect of TNF-α and IL-1β genetics variants om the development of myocardial infarction in Torkish population. Molecular Biology Reports. 2011;38:5453-7. doi:10.1007/s11033-011-0701-x.

29. Fang Y, Xie H, Lin Z. Association between IL-1β +3954C/T polymorphism and myocardial infarction risk. A meta-analysis. Medicine. 2018;97(20):11645. doi:10.1097/ md.0000000000011645.

30. Mahmoudi MJ, Taghvaei M, Harsini S, et al. Association of interleukin 1 gene cluster and interleukin 1 receptor gene polymorphisms with ischemic heart failure. Bratisl Med J. 2016;117(7):367-70. doi:10.4149/bll_2016_072.

31. Lacoviello L, Castelnuovo D, Gattone M, et al. Polymorphism of the interleukin-1β gene affect the risk of myocardial infarction and ischemic stroke at young age and the response of mononuclear cells to stimulation in vitro. Atherosclerosis, Thrombosis, and Vascular Biology. 2005;25:222-7. doi:10.1161/01.atv.0000150039.60906.02.

32. Tabata N, Sueta D, Akasaka T, et al. Helicobacter pylori seropositivity in patients with interleukin-1 polymorphism is significantly associated with ST-segment elevation myocardial infarction. PLOS ONE. 2016;11(11):e0166240. doi:10.1371/journal.pone.0166240.

33. Chen Q, Wang W, Huang Zh, et al. Correlation of rs1122608 SNP with acute myocardial infarction susceptibility and clinical characteristics in a Chinese Han population: A case control study. The Anatolian Journal of Cardiology. 2018;19(4):249-58. doi:10.14744/anatoljcardiol.2018.35002.

34. Yang B, Zhao H, Bin X, et al. Influence of interleukin-1 beta gene polymorphisms on the risk of myocardial infarction and ischemic stroke at young age in vivo and vitro. International Journal of Clinical and Experimental Pathology. 2015;8(11):13806-13. doi:10.1161/01.atv.0000150039.60906.02.

35. Stegger J, Schmidt E, Tjønneland A, et al. Single nucleotide polymorphisms in IL1B and the risk of acute coronary syndrome: a Danish case-cohort study. PLOSE ONE. 2012;7(6):36829. doi:10.1371/journal.pone.0036829.

36. Kaur N, Singh J, Reddy S. Association of IL-8 -251A/T rs4073 and IL-10 rs1800872 -592C/ A polymorphisms and coronary artery disease in North Indian Population. Biochemical Genetics. 2019;57(1):126-46. doi:10.1007/s10528-018-9880-7.

37. Yang H, Wang S, Yan L, et al. Association of interleukin gene polymorphism with gene polymorphisms with the risk of coronary artery disease. Genetics and Molecular Research. 2015;14(4):1289-96. doi:10.4238/2015.october.16.16.

38. Wang Y, Zheng J, Liu P, et al. Association between the interleukin 10 — 1082G>A polymorphism and coronary heart disease risk in a Caucasian population: a meta-analysis. Immunogenetics. 2012;39(2):144-50. doi:10.1111/j.1744-313x.2011.01072.x.

39. Yang P, Liu J, Xiao J, et al. Association between Seven Common Cytokine Gene Polymorphisms and Coronary Artery Disease: Evidence from a Meta-Analysis. International Archive of Allergy and Immunology. 2020;181(4):301-10. doi:10.1159/000504752.

40. Lio D, Candore G, Crivello A, et al. Opposite effects of interleukin-10 common gene polymorphisms in cardiovascular disease and in successful ageing: genetic background of male centenarians is protective against coronary heart disease. Journal of Medical Genetics. 2004;41(10):790-4.

41. Бернс С. А., Шмидт Е. А., Макеева О. А. и др. Роль вариабельных сайтов G-1082А и С-592А гена IL10 в развитии неблагоприятных исходов в течение одного года наблюдения у больных с острым коронарным синдромом без подъема сегмента ST. Российский кардиологический журнал. 2017;(10):17-22. doi:10.15829/1560-40712017-10-17-22.

42. Wang S, Dai YX, Chen LL, et al. Effect of IL-1β, IL-8, and IL-10 polymorphisms on the development of myocardial infarction. Genetic and Molecular Research. 2015;14(4):12016-21. doi:10.4238/2015.october.5.14.

43. Mahmoudi M, Hedayat M, Taghvaei M, et al. Association of IL-4 gene polymorphisms with ischemic heart failure. 2014;21(1):24-8. doi:10.5603/cj.a2013.0049.

44. Sobti R, Maithil N, Thakur H, et al. VEGF and IL-4 gene variability and its association with the risk of coronary heart disease in north Indian population. Molecular and Cellular Biochemistry. 2010;341(1-2):139-48. doi:10.1007/s11010-010-0445-2.

45. Koch W, Hoppmann P, Mueller J, et al. Association of transforming growth factor-beta1 gene polymorphisms with myocardial infarction in patients with angiographically proven coronary heart disease. 2006;26(5):1114-9. doi:10.1161/01.atv.0000217747.66517.11.

46. Li Ya, Zhou Ya, Gong G, et al. TGF-B1 gene -509C/T polymorphism and coronary artery disease: an updated meta-analysis involving 11,701 subjects. Frontiers in Physiology. 2017;(8). doi:10.3389/fphys.2017.00108.

47. Wu L, Chen G, Song J Association between TGF-β1 -913G/C polymorphism and myocardial infarction risk in a Chinese Han population: a case-control study. Bioscience Reports. 2019;39(6):BSR20190315. doi:10.1042/bsr20190315.

48. Du L, Gong T, Yao M, et al. Contribution of the polymorphism rs1800469 of transformation growth factor β in the development of myocardial infarction: meta-analysis of 5460 cases and 8413 controls (MOOSE-complaint article). Medicine. 2019;28(26):e15946. doi:10.1097/md.0000000000015946.

49. Шляхто Е. В., Сергеева Е. Г., Беркович О. А. и др. Предикторы неблагоприятного течения ишемической болезни сердца: результаты динамического наблюдения. Российский кардиологический журнал. 2018;(7):60-66. doi:10.15829/1560-4071-2018-7-60-66.


Для цитирования:


Николаева А.М., Бабушкина Н.П., Рябов В.В. Некоторые про- и противовоспалительные цитокины, полиморфные варианты их генов и постинфарктное ремоделирование сердца. Российский кардиологический журнал. 2020;25(10):4007. https://doi.org/10.15829/1560-4071-2020-4007

For citation:


Nikolaeva A.M., Babushkina N.P., Ryabov V.V. Some pro- and anti-inflammatory cytokines, their genetic polymorphism and postinfarct cardiac remodeling. Russian Journal of Cardiology. 2020;25(10):4007. (In Russ.) https://doi.org/10.15829/1560-4071-2020-4007

Просмотров: 80


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)