Preview

Российский кардиологический журнал

Расширенный поиск

Особенности локальной гемодинамики и формирования атеросклеротического поражения в бифуркациях коронарных артерий

https://doi.org/10.15829/1560-4071-2020-3900

Полный текст:

Аннотация

Процесс формирования атеросклеротической бляшки в коронарных артериях носит сложный, многофакторный характер, зависящий не только от традиционных факторов риска сердечно-сосудистых заболеваний, но и от особенностей локальной гемодинамики. Атеросклеротические бляшки часто возникают в области бифуркации артерий — там, где кровоток неравномерен. В таких условиях пристеночное напряжение сдвига становится ключевым фактором развития, распространения и прогрессирования атеросклеротической бляшки. Кроме того, ряд факторов, как индивидуальная геометрия бифуркации, имплантация коронарного стента, техника имплантации могут существенно влиять на показатели напряжения сдвига и тем самым влиять на патофизиологию коронарного атеросклероза.

Об авторах

Д. А. Хелимский
ФГБУ Национальный медицинский исследовательский центр им. акад. Е. Н. Мешалкина
Россия

Хелимский Дмитрий Александрович — кандидат медицинских наук, врач по рентгенэндоваскулярным диагностике и лечению.

Новосибирск


А. Г. Бадоян
ФГБУ Национальный медицинский исследовательский центр им. акад. Е. Н. Мешалкина
Россия

Бадоян Арам Гозоевич — аспирант центра интервенционной кардиологии.

Новосибирск



Т. К. Эралиев
Медицинский центр Кардио Азия Плюс
Кыргызстан

Эралиев Талант Каканович — врач по рентгенэндоваскулярным диагностике и лечению.

Ош



О. В. Крестьянинов
ФГБУ Национальный медицинский исследовательский центр им. акад. Е. Н. Мешалкина
Россия

Крестьянинов Олег Викторович — кандидат медицинских наук, ведущий научный сотрудник центра интервенционной кардиологии, заведующий кардиохирургическим отделением интервенционной кардиологии.

Новосибирск



Список литературы

1. Feng Y, Wang X, Fan T, et al. Bifurcation Asymmetry of Small Coronary Arteries in Juvenile and Adult Mice. Front Physiol. 2018;9. doi:10.3389/fphys.2018.00519.

2. Rabbi M, Laboni F, Arafat, M. Computational analysis of the coronary artery hemodynamics with different anatomical variations. Inform Med Unlocked. 2020;19:100314. doi:101016/j.imu.2020.100314.

3. Giannoglou GD, Antoniadis, AP, Koskinas, KC, et al. Flow and atherosclerosis in coronary bifurcations. EuroIntervention.2010;6:J16-J23. doi:10.4244/EIJV6SUPJA4.

4. Heo KS, Fujiwara K, Abe J. Shear stress and atherosclerosis. Mol Cells. 2014;37(6):435-40. doi:10.14348/molcells.2014.0078.

5. Garcia J, Manuel F, Doce Y, et al. Pulsatile flow in coronary bifurcations for different stenting techniques. Proceedings of 10th World Congress on Computational Mechanics. 2014. doi:10.5151/meceng-wccm2012-18404.

6. Cho S, Kang TS, Kim J-S, et al. Long-Term Clinical Outcomes and Optimal Stent Strategy in Left Main Coronary Bifurcation Stenting. JACC: Cardiovascular Interventions. 2018;11(13):1247-58. doi:10.1016/j.jcin.2018.03.009.

7. Nairooz R, Saad M, Elgendy IY, et al. Long-term outcomes of provisional stenting compared with a two-stent strategy for bifurcation lesions: a meta-analysis of randomised trials. Heart. 2017;103(18):1427-34. doi:10.1136/heartjnl-2016-310929.

8. Pu J, Mintz G, Brilakis E, et al. In vivo characterization of coronary plaques: novel findings from comparing greyscale and virtual histology intravascular ultrasound and near-infrared spectroscopy. Eur Heart J. 2011;33(3):372-83. doi:10.1093/eurheartj/ehr387.

9. Araki M, Yonetsu T, Russo M, et al. Predictors for layered coronary plaques: an optical coherence tomography study. J Thromb Thrombolysis. 2020. doi:10.1007/s11239-020-02116-5.

10. Migliori S, Chiastra C, Bologna M, et al. Application of an OCT-based 3D reconstruction framework to the hemodynamic assessment of an ulcerated coronary artery plaque. Med Eng Phys. 2020;78:74-81. doi:10.1016/j.medengphy.2019.12.006.

11. Razavi MS, Shirani E, Kassab GhS. Scaling Laws of Flow Rate, Vessel Blood Volume, Lengths, and Transit Times With Number of Capillaries. Frontiers in Physiology. 2018;9:581. doi:10.3389/fphys.2018.00581.

12. Lin T. Physiology of the circulation. In: C. Mowatt, T. Lin, T. Smith, C. Pinnock ed, Fundamentals of Anaesthesia. 2nd ed. Cambridge/Cambridge University Press, 2016:315-43.

13. Pappano A, Wier W. Cardiovascular Physiology. 10th edition. Elsevier, 2013. 305 p. (Mosby Physiology Monograph Series). ISBN 978-0-323-08697-4.

14. Katritsis, D, Kaiktsis L, Chaniotis A, et al. Wall Shear Stress: Theoretical Considerations and Methods of Measurement. Progress in Cardiovascular Diseases. 2007;49(5):307-29. doi:10.1016/j.pcad.2006.11.001.

15. Dhawan SS, Avati Nanjundappa RP, Branch JR, et al. Shear stress and plaque development. Expert Rev Cardiovasc Ther. 2010;8(4):545-56. doi:10.1586/erc.10.28.

16. Lu J, Yu J, Shi H. Feasibility Study of Computational Fluid Dynamics Simulation of Coronary Computed Tomography Angiography Based on Dual-Source Computed Tomography. J Clin Med Res. 2017;9(1):40-5. doi:10.14740/jocmr2623w.

17. Gijsen F, Katagiri Y, Barlis P, et al. Expert recommendations on the assessment of wall shear stress in human coronary arteries: existing methodologies, technical considerations, and clinical applications. Eur Heart J. 2019;40(41):3421-33. doi:10.1093/eurheartj/ehz551.

18. Kok AM, Molony DS, Timmins LH, et al. The influence of multidirectional shear stress on plaque progression and composition changes in human coronary arteries. EuroIntervention. 2019;15(8):692-9. doi:10.4244/EIJ-D-18-00529.

19. Mahalingam A, Gawandalkar UU, Kini G, et al. Numerical analysis of the effect of turbulence transition on the hemodynamic parameters in human coronary arteries. Cardiovasc Diagn Ther. 2016;6(3):208-20. doi:10.21037/cdt.2016.03.08.

20. Thomas J, Winther S, Wilson R, Bottcher M. A novel approach to diagnosing coronary artery disease: acoustic detection of coronary turbulence. Int J Cardiovasc Imaging. 2016;33(1):129-36. doi:10.1007/s10554-016-0970-5.

21. Park J, Choi G, Chun E, et al. Computational fluid dynamic measures of wall shear stress are related to coronary lesion characteristics. Heart. 2016;102(20):1655-61. doi:101136/heartjnl-2016-309299.

22. Starikov A, Xiong G, Min J. Wall shear stress calculated by computational fluid dynamics from coronary ct angiography images for identification and exclusion of lesion-specific ischemia. J Am Coll Cardiol. 2015;65(10):A1107. doi:10.1016/s0735-1097(15)61107-x.

23. Sianos G, Sara J, Zaromytidou M, et al. Local Low Shear Stress and Endothelial Dysfunction in Patients With Nonobstructive Coronary Atherosclerosis. J Am Coll Cardiol. 2018;71(19):2092-102. doi:10.1016/j.jacc.2018.02.073.

24. Vozzi F, Campolo J, Cozzi L, et al. Computing of Low Shear Stress-Driven Endothelial Gene Network Involved in Early Stages of Atherosclerotic Process. Biomed Res Int. 2018;2018:1-12. doi:10.1155/2018/5359830.

25. Toggweiler S, Urbanek N, Schoenenberger AW, et al. Analysis of coronary bifurcations by intravascular ultrasound and virtual histology. Atherosclerosis.2010;212:524-7. doi:10.1016/j.atherosclerosis.2010.06.045.

26. Thondapu V, Bourantas C, Foin N, et al. Biomechanical stress in coronary atherosclerosis: emerging insights from computational modelling. Eur Heart J. 2016:ehv689. doi:10.1093/eurheartj/ehv689.

27. Morbiducci U, Kok A, Kwak B, et al. Atherosclerosis at arterial bifurcations: evidence for the role of haemodynamics and geometry. Thromb Haemost. 2016;115(03):484-92. doi:10.1160/th15-07-0597.

28. Li L, Dash D, Gai LY, et al. Intravascular Ultrasound Classi cation of Plaque in Angiographic True Bifurcation Lesions of the Left Main Coronary Artery. Chin Med J 2016;129:1538-43. doi:10.4103/0366-6999.184456.

29. Gwon HC, Song YB, Pan M. The story of plaque shift and carina shift. EuroIntervention. 2015;11 Suppl V:V75-V77 doi:10.4244/EIJV11SVA16.

30. Chatzizisis YS, Jonas M, Coskun AU, et al. Prediction of the localization of high-risk coronary atherosclerotic plaques on the basis of low endothelial shear stress: An intravascular ultrasound and histopathology natural history study. Circulation. 2008;117:993-1002. doi:10.1161/CIRCULATIONAHA.107.695254.

31. Vander Giessen AG, Wentze JJ, Meijboom WB, et al. Plaque and shear stress distribution in human coronary bifurcations: a multislice computed tomography study. EuroIntervention. 2009;4:654-61. doi:10.4244/eijv4i5a109.

32. Koskinas KC, Feldman CL, Chatzizisis YS, et al. Natural history of experimental coronary atherosclerosis and vascular remodeling in relation to endothelial shear stress: a serial, in vivo intravascular ultrasound study. Circulation. 2010;121:2092-101. doi:10.1161/CIRCULATIONAHA.109.901678.

33. Costopoulos Ch, Timmins LH, Huang Y, et al, Impact of combined plaque structural stress and wall shear stress on coronary plaque progression, regression, and changes in composition. European Heart Journal. 2019;40(18),1411-22. doi:10.1093/eurheartj/ehz132.

34. Bajraktari A, Bytyci I, Henein MY. The Relationship between Coronary Artery Wall Shear Strain and Plaque Morphology: A Systematic Review and Meta-Analysis. Diagnostics (Basel). 2020;10(2):91. doi:10.3390/diagnostics10020091.

35. Wang Y, Qiu J, Luo S, et al. High shear stress induces atherosclerotic vulnerable plaque formation through angiogenesis. Regen Biomater. 2016;3(4):257-67. doi:10.1093/rb/rbw021.

36. Cheng C, Tempel D, van Haperen R, et al. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation. 2006;113:2744-53. doi:10.1161/CIRCULATIONAHA.105.590018.

37. Van der Heiden K, Gijsen FJH, Narracott A, et al. The effects of stenting on shear stress: relevance to endothelial injury and repair. Cardiovasc Res. 2013;99(2):269-75, doi:10.1093/cvr/cvt090.

38. Koppara T, Cheng Q, Yahagi K et al. Thrombogenicity and Early Vascular Healing Response in Metallic Biodegradable Polymer-Based and Fully Bioabsorbable DrugEluting Stents. Circulation: Cardiovascular Interventions. 2015;8(6). doi:10.1161/circinterventions.115.002427.

39. Tenekecioglu E, Sotomi Y, Torii R, et al. Strut protrusion and shape impact on endothelial shear stress: insights from pre-clinical study comparing Mirage and Absorb bioresorbable scaffolds. Int J Cardiovasc Imaging. 2017;33(9):1313-22. doi:10.1007/s10554-017-1124-0.

40. Lamberti G, Soroush F, Smith A, et al. Adhesion patterns in the microvasculature are dependent on bifurcation angle. Microvasc Res. 2015;99:19-25. doi: 10.1016/j.mvr.2015.02.004.

41. Yazdani SK, Nakano M, Otsuka F, et al. Atheroma and coronary bifurcations: before and after stenting. EuroIntervention. 2010; 6 Suppl J: J24-J30, doi:10.4244/EIJV6SUPJA5.

42. Burzotta F, Talarico GP, Trani C, et al. Frequency-domain optical coherence tomography findings in patients with bifurcated lesions undergoing provisional stenting. Eur Heart J Cardiovasc Imaging. 2014;15(5):547-55. doi:10.1093/ehjci/jet231.

43. Jenei C, Balogh E, Szabo GT, et al. Wall shear stress in the development of in-stent restenosis revisited. A critical review of clinical data on shear stress after intracoronary stent implantation. Cardiol J. 2016;23(4):365-73. doi:10.5603/CJ.a2016.0047.

44. Ormiston JA, Webber B, Ubod B, et al. Coronary stent durability and fracture: an independent bench com- parison of six contemporary designs using a repetitive bend test. EuroIntervention. 2015;10:1449-55. doi:10.4244/EIJY14M11_08.

45. Hikichi Y, Umezu M, Node K, et al. Reduction in incomplete stent apposition area caused by jailed struts after single stenting at left main bifurcation lesions: micro-CT analysis using a three-dimensional elastic bifurcated coronary model. Cardiovasc Interv Ther. 2017;32:12-7. doi:10.1007/s12928-016-0380-6.

46. Williams AR, Koo BK, Gundert TJ, et al. Local hemodynamic changes caused by main branch stent implantation and subsequent virtual side branch balloon angioplasty in a representative coronary bifurcation. J Appl Physiol. 2010;109(2):532-40. doi: 10.1152/japplphysiol.00086.2010.

47. Zhong M, Tang B, Zhao Q, et al. Should kissing balloon inflation after main vessel stenting be routine in the one-stent approach? A systematic review and meta-analysis of randomized trials. PLoS One. 2018 Jun 27;13(6):e0197580. doi:10.1371/journal.pone.0197580.

48. Burzotta F, Trani C. In bifurcation PCI, as in everyday life, the consequences of kissing may not always be the same. EuroIntervention. 2016;11(11):e1209-e1213. doi:10.4244/EIJV11I11A240.

49. Sawaya FJ, Lefevre T, Chevalier B, et al. Contemporary approach to coronary bifurcation lesion treatment. JACC Cardiovasc Interv. 2016;9(18):1861-78. doi :10.1016/j.jcin.2016.06.056.

50. Morris P, Gosling R, Rothman A et al. Double-Kissing Nanocrush for Bifurcation Lesions: Development, Bioengineering, Fluid Dynamics, and Initial Clinical Testing. Canadian Journal of Cardiology. 2019. doi:10.1016/j.cjca.2019.08.037.

51. Cai W, Chen L, Zhang L et al. Branch ostial optimization treatment and optimized provisional t-stenting with polymeric bioresorbable scaffolds. Medicine (Baltimore). 2018;97(43):e12972. doi:10.1097/md.0000000000012972.

52. Brindise MC, Chiastra C, Burzotta F, et al. Hemodynamics of Stent Implantation Procedures in Coronary Bifurcations: An In Vitro Study. Ann Biomed Eng. 2017;45(3):542-53. doi:10.1007/s10439-016-1699-y.

53. Katritsis DG, Theodorakakos A, Pantos I, et al. Flow patterns at stented coronary bifurcations: computational fluid dynamics analysis. Circ Cardiovasc Interv. 2012;5(4):530-9. doi:10.1161/CIRCINTERVENTIONS.112.968347.

54. Rigatelli G, Zuin M, Nguyen T. Left main bifurcation stenting assessed by computational fluid dynamic: The impact on wall shear stress forces depends on both specific techniques and bifurcation angles. Journal of Integrative Cardiology. 2018;4(5). doi:10.15761/jic.1000259.

55. Gogineni A, Ravigururajan TS. Flow Dynamics and Wall Shear Stresses in a Bifurcated Femoral Artery. Journal of Biomedical Engineering and Medical Devices. 2017;02(02). doi:10.4172/2475-7586.1000130.

56. Sun Z, Chaichana T. An investigation of correlation between left coronary bifurcation angle and hemodynamic changes in coronary stenosis by coronary computed tomography angiography-derived computational fluid dynamics. Quantitative imaging in medicine and surgery. 2017;7(5):537-48. doi:10.21037/qims.201710.03.

57. Chiastra C, Iannaccone F, Grundeken MJ, et al. Coronary fractional flow reserve measurements of a stenosed side branch: a computational study investigating the influence of the bifurcation angle. Biomedical Engineering Online. 2016;15(1):91. doi:10.1186/s12938-016-0211-0.

58. Barlis P, Poon EK, Thondapu V, et al. Reversal of flow between serial bifurcation lesions: insights from computational fluid dynamic analysis in a population-based phantom model. EuroIntervention. 2015;11(5):e1-e3. doi:10.4244/EIJV11I5A111.

59. Kassab GS. Network Analysis of Coronary Circulation: II. Pulsatile Flow. In: Coronary Circulation. Springer, Cham. 2019;363-452. doi:101007/978-3-030-14819-5_6.

60. Malota Z, Glowacki J, Sadowski W, et al. Numerical analysis of the impact of flow rate, heart rate, vessel geometry, and degree of stenosis on coronary hemodynamic indices. BMC Cardiovasc Disord. 2018;18(1). doi:10.1186/s12872-018-0865-6.


Для цитирования:


Хелимский Д.А., Бадоян А.Г., Эралиев Т.К., Крестьянинов О.В. Особенности локальной гемодинамики и формирования атеросклеротического поражения в бифуркациях коронарных артерий. Российский кардиологический журнал. 2020;25(5):3900. https://doi.org/10.15829/1560-4071-2020-3900

For citation:


Khelimsky D.A., Badoyan A.G., Eraliev T.K., Krestyaninov O.V. Features of local hemodynamics and the formation of atherosclerotic lesions in coronary artery bifurcation. Russian Journal of Cardiology. 2020;25(5):3900. (In Russ.) https://doi.org/10.15829/1560-4071-2020-3900

Просмотров: 86


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)