Myocardial electrical instability score: clinical and prognostic significance
https://doi.org/10.15829/1560-4071-2019-12-55-61
Abstract
Aim. To develop and test a risk-stratification model for patients with coronary artery disease (CAD) and non-ischemic pathologies based on a computer analysis of electrical instability ECG markers.
Material and methods. In the period from 2011 to 2018, the study included 1014 patients with CAD and non-ischemic pathologies. Depending on ventricular arrhythmia status, the analyzed cohort was divided into 3 groups: 1) 644 patients without lifethreatening ventricular tachyarrhythmias (-VTA), mean age 51,7±16,1 years; 2) 280 patients with clinically significant ventricular arrhythmias (+csVA): ventricular extrasystoles (VES) >1500/24 h, coupled VES >50/24 h or unstable ventricular tachycardia (uVT), mean age 46,7±14,0 years; 3) 90 patients with life-threatening ventricular tachyarrhythmias (+VTA): persistent VT (pVT), successful cardiopulmonary resuscitation (CPR), appropriate discharges by implanted cardioverter defibrillator (CVD), sudden cardiac death (SCD), mean age 46,8±12,7 years.
Using the Intekard 7.3 software, ECG markers of myocardial electrical instability were analyzed: T wave alternation, QT interval and dispersion, fragmented QRS, spatial QRS-T angle, turbulence onset and slope, and heart rate deceleration/acceleration.
Results. Statistically significant differences were found between the values of T wave alternation, QT interval, fragmented QRS and QRS-T angle in groups 1 and 3 (-VTA) and (+VTA), p<0,005.
Personalized model was formed for predicting the risk of life-threatening VTA (primary endpoints: pVT, appropriate CVD discharges, CPR, SCD) in patients with CAD and non-ischemic pathologies (cardiomyopathy, channelopathy) in 5 years follow-up. Integral score of myocardial electrical instability is proposed as new quantitative parameter for risk stratification (sensitivity 75%, specificity 78%, accuracy 77%).
Conclusion. The myocardial electrical instability score provides the individual assessment of the dynamic SCD risk. The Intekard 7.3 software is a simple, economic and accessible ECG tool for arrhythmia monitoring.
About the Authors
A. V. FrolovBelarus
Minsk
Competing Interests: конфликт интересов не заявляется
T. G. Vaykhanskaya
Belarus
Minsk
Competing Interests: конфликт интересов не заявляется
O. P. Melnikova
Belarus
Minsk
Competing Interests: конфликт интересов не заявляется
A. P. Vorobev
Belarus
Minsk
Competing Interests: конфликт интересов не заявляется
A. G. Mrochek
Belarus
Minsk
Competing Interests: конфликт интересов не заявляется
References
1. Wellens H, Schwatz P, Lindermans F, et al. Risk stratification for sudden cardiac death: current status and challenges for the future. European Heart Journal. 2014;35(25):1642-51. doi:10.1093/eurheartj/ehu176.
2. Winkel BG, Holst AG, Theilade J, et al. Nationwide study of sudden cardiac death in persons aged 1-35 years. European Heart Journal, 2011; 32(8):483-90. doi:10.1093/euheartj/ehu428.
3. Simonenko VV, Shirokov EA, Frolov VM. Clinical crisis science in cardioneurology; A guide for physicians. M.: Quantum Publishing House, 2015, 293 p. (In Russ.) ISBN 978-5-904750-14-5.
4. Ayesta A, Martinez-Selles H, Bayes de Luna A, et al. Prediction of sudden cardiac death in elderly patients with heart failure. Journal of Geriatric Cardiology. 2018;15(2):185-92. doi:10.11909/j.issn.1671-5011.2018.
5. Graham I. The importance of total cardiovascular risk assessment in clinical practice. The European Journal of General Practice. 2006;12(4):148-55. doi:10.1080/13814780600976282.
6. Levy WC, Mazaffarian D, Linker DT, et al. The Seattle heart failure model: prediction of survival in heart failure. Circulation, 2006;113(11):1424-33. doi:10.1161/ CIRCULATIONAHA.105.584102.
7. Lee DS, Ezekowitz JA. Risk prediction in acute heart failure. Canadian Journal of Cardiology. 2014;30(3):312-9. doi:10.1016/j.cjca.2014.01.001.
8. Priori SG, Blomstrom-Lundqvist C, Mazzatti A, et al. (2015) ESC Guidelines for management of patients with ventricular arrhythmias and prevention sudden cardiac death. European Heart Journal. 2015;36:2793-867. doi:10.1093/eurheartj/ehv316.
9. Agresti A. An introduction to categorical data analysis. Second Edition. N.J: J. Wiley&Sons Inc, 2007, 372 p. ISBN 978-0-471-22618-5.
10. Frolov AV, Melnikova OP, Vaikhanskaya TG, et al. Fragmented QRS complex as a highly informative marker of cardiac ventricular depolarization disorders. Cardiology in Belarus. 2019;11(2):178-87. (In Russ.)
11. Das MK, Khan B, Jakob S, et al. Significance fragmented QRS complex versus Q wave in patients with coronary heart disease. Circulation. 2006;113(21):2495-501. doi:10.1161/CIRCULATIONAHA.105.595892.
12. Voulagri C, Pagoni S, Tesfaye S, et al. The spatial QRS-T angle: implications in clinical practice. Current Cardiology Review. 2013;9(3):197-210. doi:10.2174/157340 3X113099990031.
13. Vaikhanskaya TG, Frolov AV, Melnikova OP, et al. Stratification of the risk of sudden cardiac death in patients with dilated cardiomyopathy. Journal of Arrhythmology. 2014;77:24-31. (In Russ.)
14. Al-Khatib SM, Stevenson WG, Ackerman MJ, et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death — Executive Summary. A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Heart Rhythm. 2018; 72(14):1677-749. doi:10.1016/j.hrthm.2017.10.035.
Review
For citations:
Frolov A.V., Vaykhanskaya T.G., Melnikova O.P., Vorobev A.P., Mrochek A.G. Myocardial electrical instability score: clinical and prognostic significance. Russian Journal of Cardiology. 2019;(12):55-61. (In Russ.) https://doi.org/10.15829/1560-4071-2019-12-55-61