Preview

Russian Journal of Cardiology

Advanced search

Cellular and molecular mechanisms of calcific aortic valve disease

https://doi.org/10.15829/1560-4071-2019-9-86-91

Abstract

The review provides current data on the pathogenesis of calcific aortic valve disease (CAVD) — a widespread disease with unfavorable prognosis. Currently, there are no effective therapeutic methods for the prevention and treatment of this pathology with the exception of valve replacement surgery. The role of genetic and hereditary factors in the occurrence of CAVD is considered, the leading pathogenetic mechanisms are described taking into account the stage of the disease. In particular, in the initiation phase of calcification, deposition of oxidized lipoproteins in the cusps and local inflammation plays the leading role. In the progression phase, active ectopic calcification dominates, similar to the process of bone formation. The study of the pathogenesis of CAVD seems appropriate taking into account the prospect of developing new effective therapeutic and prophylactic approaches.

About the Authors

E. V. Shcheglova
Stavropol State Medical University
Russian Federation
Stavropol


M. Kh. Baykulova
Regional Clinical Cardiology Dispensary
Stavropol


O. I. Boeva
Stavropol State Medical University
Russian Federation
Stavropol


References

1. Peeters FECM, Meex SJR, Dweck MR, et al. Calcific aortic valve stenosis: hard disease in the heart: A biomolecular approach towards diagnosis and treatment. Eur Heart J. 2018;39(28):2618-24. doi:10.1093/eurheartj/ehx653.

2. Lucena CM, Santos RP. Association between Aortic Valve Sclerosis and Adverse Cardiovascular Events. Arq Bras Cardiol. 2015;105(1):99. doi:10.5935/abc.20150081.

3. Hudzik B, Wilczek K, Gasior M. Heyde syndrome: gastrointestinal bleeding and aortic stenosis. CMAJ. 2016;188(2):135-8. doi:10.1503/cmaj.150194.

4. Moncheberg JG. Der normale histologischeBau und die ScleroseAortenklappen. Virchows Archiv fur pathologische Anatomie und Physiology und fur Klinische Medizin. 1904;176:472-96. doi.org/10.1007/bf02041318.

5. Egorov IV, Shostak NA, Artyuhina EA. Aortic stenosis of degenerative genesis — a problem at the intersection of opinions. Russian Journal of Cardiology. 1999;4:50-3. (In Russ.)

6. Braunwald E. Heart Disease: A Textbook of Cardiovascular Medicine (Volume 2) — Philadelphia: W. B. Saunders Company; 1988. 13-41 p. ISBN-10: 0721619541 ISBN-13: 978-0721619545.

7. Hulin A, Hego A, Lancellotti P, et al. Advances in pathophysiology of calcific aortic valve disease propose novel molecular therapeutic targets. Front Cardiovasc Med. 2018;5:21. doi:10.3389/fcvm.2018.00021.

8. Rajamannan NM, Moura L. The lipid hypothesis in calcific aortic valve disease: the role of the multi-ethnic study of atherosclerosis. Arterioscler Thromb Vasc Biol. 2016;36:774-6. doi:10.1161/ATVBAHA.116.307435.

9. Coffey S, Cox B, Williams MJ. The prevalence, incidence, progression, and risks of aortic valve sclerosis: a systematic review and meta-analysis. J Am Coll Cardiol. 2014;63(25):2852-61. doi:10.1016/j.jacc.2014.04.018.

10. Sathyamurthy I, Alex S. Calcific aortic valve disease: is it another face of atherosclerosis? Indian heart journal. 2015;67(5):503-6. doi:10.1016/j.ihj.2015.07.033.

11. Ferreira-Gonzalez I, Pinar-Sopena J, Ribera A et al. Prevalence of calcific aortic valve disease in the elderly and associated risk factors: a population-based study in a Mediterranean area. Eur J Prev Cardiol. 2013;20(6):1022-30. doi:10.1177/2047487312451238.

12. Ye C, Xu M, Wang S, et al. Decreased Bone Mineral Density Is an Independent Predictor for the Development of Atherosclerosis: A Systematic Review and Meta-Analysis. PLoS One. 2016;11(5):e0154740. doi:10.1371/journal.pone.0154740.

13. Parisi V, Leosco D, Ferro G, et al. The lipid theory in the pathogenesis of calcific aortic stenosis. Nutrition, Metabolism & Cardiovascular Diseases. 2015;25:519-25. doi:10.1016/j.numecd.2015.02.001.

14. Rajamannan NM. Oxidative-mechanical stress signals stem cell niche mediated Lrp5 osteogenesis in eNOS(-/-) null mice. J Cell Biochem. 2012;113(5):1623-34. doi:10.1002/jcb.24031.

15. Nadlonek NA, Lee JH, Weyant MJ. ox-LDL induces PiT-1 expression in human aortic valve interstitial cells. J Surg Res. 2013;184:6-9. doi:10.1016/j.jss.2013.05.001.

16. Mohty D, Pibarot P, Despres JP. Association between plasma LDL particle size, valvular accumulation of oxidized LDL and inflammation in patients with aortic stenosis. Arterioscler Thromb Vasc Biol. 2008;28:187-93. doi:10.1161/ATVBAHA.107.154989.

17. Smith J, Luk GK, Schulz CA, et al. Cohorts for heart and aging research in genetic epidemiology (CHARGE) extracoronary calcium working group. Association of low-density lipoprotein cholesterol-related genetic variants with aortic valve calcium and incident aortic stenosis. J Am Med Assoc. 2014;312:1764-71. doi:10.1001/jama.2014.13959.

18. Olgun Kucuk H, Kucuk U, Demirtaş C, Ozdemir M. Role of serum high density lipoprotein levels and functions in calcific aortic valve stenosis progression. Int J Clin Exp Med. 2015;8(12):22543-9.

19. Lommi JI, Kovanen T, Jauhiainen M. High-density lipoproteins (HDL) are present in stenotic aortic valves and may interfere with the mechanisms of valvular calcification. Atherosclerosis. 2011;219(2):538-44. doi:10.1016/j.atherosclerosis.2011.08.027.

20. El Accaoui RN, Gould ST, Hajj GP, et al. Aortic valve sclerosis in mice deficient in endothelial nitric oxide synthase. Am J Physiol Heart Circ Physiol. 2014;306:H1302-13. doi:10.1152/ajpheart.00392.2013.

21. Audet A, Cote N, Couture C, et al. Amyloid substance within stenotic aortic valves promotes mineralization. Histopathology. 2012;61:610-9. doi:10.1111/j.1365-2559.2012.04265.x.

22. Trapeaux J, Busseuil D, Shi Y, et al. Improvement of aortic valve stenosis by ApoA-I mimetic therapy is associated with decreased aortic root and valve remodelling in mice. Br J Pharmacol. 2013;169(7):1587-99. doi:10.1111/bph.12236.

23. Dimitrow PP. Aortic stenosis: new pathophysiological mechanisms and their therapeutic implications. Pol Arch Med Wewn. 2014;124(12):723-30. doi:10.20452/pamw.2562.

24. Ardehali R, Leeper NJ, Wilson AM, et al. The effect of angiotensin-converting enzyme inhibitors and statins on the progression of aortic sclerosis and mortality. J Heart Valve Dis. 2012;21(3):337-43.

25. Akin I, Nienaber CA. Is there evidence for statins in the treatment of aortic valve stenosis? World J Cardiol. 2017;9(8):667-72. doi:10.4330/wjc.v9.i8.667.

26. De Vecchis R, Di Biase G, Esposito C, et al. Statin use for nonrheumatic calcific aortic valve stenosis: a review with meta-analysis. J Cardiovasc Med (Hagerstown). 2013;14(8):55967. doi:10.2459/JCM.0b013e3283587267.

27. Chan KL, Teo K, Dumesnil JG, et al. Effect of lipid lowering with rosuvastatin on progression of aortic stenosis: results of the aortic stenosis progression observation: measuring effects of rosuvastatin (ASTRONOMER) trial. Circulation. 2010;121:306-14. doi:10.1161/circulationaha.109.900027.

28. Chumakova OS, Selezneva ND, Evdokimova MA, et al. Prognostic value of aortic stenosis in patients after exacerbation of ischemic heart disease. Kardiologiia. 2011;51(1):23-31. (In Russ.)

29. Bonetti A, Marchini M, Ortolani F. Ectopic mineralization in heart valves: new insights from in vivo and in vitro procalcific models and promising perspectives on noncalcifiable bioengineered valves. J Thorac Dis. 2019;11(5):2126-43. doi:10.21037/jtd.2019.04.78.

30. New SE, Aikawa E. Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification. Circ Res. 2011;108:1381-91. doi:10.1161/circresaha.110.234146.

31. Kim KM. Calcification of matrix vesicles in human aortic valve and aortic media. Fed Proc. 1976;35:156-62.

32. Mohler ER, Gannon F, Reynolds C, et al. Bone formation and inflammation in cardiac valves. Circulation. 2001;103:1522-30. doi:10.1161/01.CIR.103.11.1522.

33. Peltonen T, Napankangas J, Ohtonen P, et al. (Pro)renin receptors and angiotensin converting enzyme 2/angiotensin-(1-7)/Mas receptor axis in human aortic valve stenosis. Atherosclerosis. 2011;216:35-43. doi:10.1016/j.atherosclerosis.2011.01.018.

34. Capoulade R, Clavel MA, Mathieu P, et al. Impact of hypertension and renin-angiotensin system inhibitors in aortic stenosis. Eur J Clin Invest. 2013;43:1262-72. doi:10.1111/eci.12169.

35. Kostyunin AE, Yuzhalin AE, Ovcharenko EA, et al. Development of calcific aortic valve disease: Do we know enough for new clinical trials? J Mol Cell Cardiol. 2019;132:189-209. doi:10.1016/j.yjmcc.2019.05.016.

36. Leopold JA. Cellular mechanisms of aortic valve calcification. Circ Cardiovasc Interv. 2012;5(4):605-14. doi:10.1161/circinterventions.112.971028.

37. Towler DA. Molecular and cellular aspects of calcific aortic valve disease. Circ Res. 2013;113(2):198-208. doi:10.1161/circresaha.113.300155.

38. Qua X, Huanga X, Jin F. Bone mineral density and all-cause, cardiovascular and stroke mortality: A meta-analysis of prospective cohort studies. Int J Cardiol. 2013;166(2):38593. doi:10.1016/j.ijcard.2011.10.114.

39. Patel KK, Shah SY, Arrigain S, et al. Characteristics and outcomes of patients with aortic stenosis and chronic kidney disease. J Am Heart Assoc. 2019;8(3):e009980. doi:10.1161/JAHA.118.009980.

40. Dweck MR, Khaw HJ, Sng GKZ, et al. Aortic stenosis, atherosclerosis, and skeletal bone: is there a common link with calcification and inflammation? Eur Heart J. 2013;34(21):156774. doi:10.1093/eurheartj/eht034.

41. Pawade TA, Newby DE, Dweck MR, et al. Calcification in Aortic Stenosis: J Am Coll Card. 2015;66(5):561-77. doi:10.1016/j.jacc.2015.05.066.

42. Debiec R, Sall H, Samani N, et al. Genetic insights into bicuspid aortic valve disease. Cardiology in Review. 2017;25(4):158-64. doi:10.1097/CRD.0000000000000147.

43. Probst V, Le Scouarnec S, Legendre A, et al. Familial aggregation of calcific aortic valve stenosis in the western part of France. Circulation. 2006;113:856-60. doi:10.1161/circulationaha.105.569467.

44. Lee SP. Understanding the Natural History of Bicuspid Aortic Valve: Are We Close to Understanding It? J Cardiovasc Imaging. 2019;27(2):119-21. doi:10.4250/jcvi.2019.27.e21.

45. Kutikhin AG, Yuzhalin AE, Brusina EB, et al. Genetic predisposition to calcific aortic stenosis and mitral annular calcification. Mol Biol Rep. 2014;41(9):5645-63. doi:10.1007/s11033-014-3434-9.

46. University of Edinburgh. Study Investigating the Effect of Drugs Used to Treat Osteoporosis on the Progression of Calcific Aortic Stenosis (SALTIRE II). 2014. https://clinicaltrials.gov/ct2/show/NCT02132026 (May 27, 2014).

47. Kang TS, Park S. Antihypertensive Treatment in Severe Aortic Stenosis. J Cardiovasc Imaging. 2018;26(2):45-53. doi:10.4250/jcvi.2018.26.e9.


Review

For citations:


Shcheglova E.V., Baykulova M.Kh., Boeva O.I. Cellular and molecular mechanisms of calcific aortic valve disease. Russian Journal of Cardiology. 2019;(9):86-91. (In Russ.) https://doi.org/10.15829/1560-4071-2019-9-86-91

Views: 937


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)