Изолированный гликогеноз сердца
https://doi.org/10.15829/1560-4071-2019-10-110-117
Аннотация
Изолированный гликогеноз сердца (синдром PRKAG2) является одной из форм гликогеноза, основным клиническим проявлением которого является гипертрофия левого желудочка, фенотипически сходная с гипертрофической кардиомиопатией, в сочетании с предвозбуждением желудочков и нарушениями проводимости. Заболевание возникает в результате мутации гена PRKAG2, кодирующего субъединицу у2 5’аденозинмонофосфат активируемой протеинкиназы; наследование — аутосомно-доминантное.
Представлен обзор сведений литературы и клиническое наблюдение двух пациентов из одной семьи с мутацией с.905С>А (p.Arg302Gln) гена PRKAG2, ассоциированной с синдромом Вольфа-Паркинсона-Уайта и ранним развитием нарушений проводимости, потребовавших имплантации электрокардиостимулятора. Обсуждены вопросы диагностики и стратегии лечения заболевания.
Ключевые слова
Об авторах
С. М. КомиссароваБеларусь
Комиссарова Светлана Михайловна — доктор медицинских наук, доцент, главный научный сотрудник лаборатории хронической сердечной недостаточности.
Минск
Конфликт интересов: нет
Н. М. Ринейская
Беларусь
Ринейская Надежда Михайловна — врач второй квалификационной категории, младший научный сотрудник лаборатории хронической сердечной недостаточности.
Минск
Конфликт интересов: нет
Н. Н. Чакова
Беларусь
Чакова Наталья Николаевна — кандидат биологических наук, ведущий научный сотрудник.
Минск
Конфликт интересов: нет
С. С. Ниязова
Беларусь
Ниязова Светлана Сергеевна — младший научный сотрудник.
Минск
Конфликт интересов: нет
Л. И. Плащинская
Беларусь
Плащинская Лариса Иосифовна — кандидат медицинских наук, научный сотрудник лаборатории нарушений сердечного ритма.
Минск
Конфликт интересов: нет
Список литературы
1. Yavari A, Bellahcene M, Bucchi A, et al. Mammalian y2 AMPK regulates intrinsic heart rate. Nat Commun. 2017;8:1258. doi:10.1038/s41467-017-01342-5.
2. Banankhah P, Fishbein GA, Dota A, et al. Cardiac manifestations of PRKAG2 mutation. BMC Med Genet. 2018;19:1. doi:10.1186/s12881-017-0512-6.
3. Zaha VYL. Amp-activated protein kinase regulation and biological actions in the heart. Circulation Research. 2012;111:800-14. doi:10.1161/CIRCRESAHA.111.255505.
4. Habets DD, Coumans WA, Voshol PJ, et al. AMPK-mediated increase in myocardial long-chain fatty acid uptake critically depends on sarcolemmal CD36. Biochem Biophys Res Commun. 2007;355:204-10. doi:10.1016/j.bbrc.2007.01.141.
5. Calore M. The PRKAG2 gene and hypertrophic cardiomyopathy: an energetically imbalanced relationship. Am J Physiol Heart Circ Physiol. 2017;313:H248-H250. doi:10.1152/ajpheart.00316.2017.
6. Gollob MH. Glycogen storage disease as a unifying mechanism of disease in the PRKAG2 cardiac syndrome. Biochem Soc Trans. 2003;31:228-31.
7. Tan HL, van der Wal AC, Campian ME, et al. Nodoventricular accessory pathways in PRKAG2-dependent familial preexcitation syndrome reveal a disorder in cardiac development. Circ Arrhythm Electrophysiol 2008;1:276-81. doi:10.1161/CIRCEP.108.782862.
8. Govindan M, Ward D, Behr E. A rare connection: fasciculoventricular pathway in PRKAG2 disease. J Cardiovasc Electrophysiol 2010;21:329-32. doi:10.1111/j.1540-8167.2009.01578.x.
9. Sternick EB, Oliva A, Gerken LM, et al. Clinical, electrocardiographic, and electrophysiologic characteristics of patients with a fasciculoventricular pathway: the role of PRKAG2 mutation. Heart Rhythm 2011;8:58-64. doi:10.1016/j.hrthm.2010.09.081.
10. Fabris E, Brun F, Porto AG, et al. Cardiac hypertrophy, accessory pathway, and conduction system disease in an adolescent: the PRKAG2 cardiac syndrome. J Am Coll Cardiol 2013;62:e17. doi:10.1016/j.jacc.2013.02.099.
11. Murphy RT, Mogensen J, McGarry K, et al. Adenosine monophosphate-activated protein kinase disease mimicks hypertrophic cardiomyopathy and Wolff- Parkinson-White syndrome: Natural history. J Am Coll Cardiol. 2005;45:922-30. doi: 10.1016/j.jacc.2004.11.053.
12. Arad M, Maron BJ, Gorham JM, et al. Glycogen storage diseases presenting as hypertrophic cardiomyopathy. N Engl J Med. 2005;352:362-72. doi:10.1056/NEJMoa033349.
13. Porto AG, Brun F, Severini GM, et al. Clinical Spectrum of PRKAG2 Syndrome. Circ Arrhythm Electrophysiol. 2016;9:e003121. doi:10.1161/CIRCEP.115.003121e003121.
14. Zhang LP, Hui B, Gao BR. High risk of sudden death associated with a PRKAG2-related familial Wolff-Parkinson-White syndrome. J Electrocardiol 2011;44:483-6. doi:10.1016/j.jelectrocard.2010.02.009.
15. Bayrak F, Komurcu-Bayrak E, Mutlu B, et al. Ventricular pre-excitation and cardiac hypertrophy mimicking hypertrophic cardiomyopathy in a Turkish family with a novel PRKAG2 mutation. Eur J Heart Fail 2006;8:712-5. doi:10.1016/j.ejheart.2006.03.006.
16. Liu Y, Bai R, Wang L, et al. Identification of a novel de novo mutation associated with PRKAG2 cardiac syndrome and early onset of heart failure. PLoS One 2013;8:e64603. doi:10.1371/journal.pone.0064603.
17. Burwinkel B, Scott JW, Buhrer C, et al. Fatal congenital heart glycogenosis caused by a recurrent activating R531Q mutation in the gamma 2-subunit of AMP-activated protein kinase (PRKAG2), not by phosphorylase kinase deficiency. Am J Hum Genet. 2005;76:1034-49. doi:10.1086/430840.
18. Sri A, Daubeney P, Prasad S, et al. A Case Series on Cardiac and Skeletal Involvement in Two Families with PRKAG2 Mutations. Case Reports in Pediatrics. 2019. Article ID 7640140, 7 pages. doi:10.1155/2019/7640140.
19. Zhang BL, Xu RL, Zhang J, et al. Identification and functional analysis of a novel PRKAG2 mutation responsible for chinese PRKAG2 cardiac syndrome reveal an important role of non-cbs domains in regulating the AMPK pathway. J Cardiol. 2013;62:241-8. doi:10.1016/j.jjcc.2013.04.010.
20. Sternick EB, Oliva A, Magalhaes LP, et al. Familial pseudo-Wolff-Parkinson-White syndrome. J Cardiovasc Electrophysiol. 2006;17:724-32. doi:10.1111/j.1540-8167.2006.00485.x.
21. Elliott PM, Anastasakis A, Borger MA, et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J. 2014;35:2733-79. doi:10.1093/eurheartj/ehu284.
22. Folmes KD, Chan AY, Koonen DP, et al. Distinct early signaling events resulting from the expression of the PRKAG2 R302Q mutant of AMPK contribute to increased myocardial glycogen. Circ Cardiovasc Genet. 2009:457-66. doi:10.1161/CIRCGENETICS.108.834564.
23. Sidhu JS, Rajawat YS, Rami TG, et al. Transgenic mouse model of ventricular preexcitation and atrioventricular reentrant tachycardia induced by an AMP- activated protein kinase loss-of-function mutation responsible for Wolff-Parkinson-White syndrome. Circulation. 2005;111:21-9. doi:10.1161/01.CIR.0000151291.32974.D5.
24. Boucek D, Jirikowic J, Taylor M. Natural history of Danon disease. Genet Med. 2011;13:563-8. doi:10.1097/GIM.0b013e31820ad795.
25. Weidemann F, Niemann M, Warnock DG, et al. The Fabry cardiomyopathy: Models for the cardiologist. Annu Rev Med. 2011;62:59-67. doi:10.1146/annurev-med-090910-085119.
Рецензия
Для цитирования:
Комиссарова С.М., Ринейская Н.М., Чакова Н.Н., Ниязова С.С., Плащинская Л.И. Изолированный гликогеноз сердца. Российский кардиологический журнал. 2019;(10):110-117. https://doi.org/10.15829/1560-4071-2019-10-110-117
For citation:
Komissarova S.M., Rineiskaya N.M., Chakova N.N., Niyazova S.S., Plashchinskaya L.I. Isolated glycogen storage disease of the heart. Russian Journal of Cardiology. 2019;(10):110-117. (In Russ.) https://doi.org/10.15829/1560-4071-2019-10-110-117