Генетические факторы риска сосудистого старения: молекулярные механизмы, полиморфизм генов-кандидатов и генные сети
https://doi.org/10.15829/1560-4071-2019-10-78-85
Аннотация
Возраст считается независимым и решающим фактором риска в развитии сердечно-сосудистых заболеваний. Старение клеток сосудов индуцирует сложные изменения структуры и функций сосудистой сети. В статье рассматривается ряд молекулярно-генетических механизмов, участвующих в патогенезе сосудистого старения: клеточная и митохондриальная дисфункция, дисфункция эндотелия, истощение пула прогениторных клеток, укорочение и повреждение теломер, хроническое воспаление, окислительный стресс, нарушение регуляции сосудистого тонуса. Появляются всё новые подтверждения перекрестной вовлечённости в процессы сосудистого старения генов-кандидатов, ассоциированных с продолжительностью жизни и сердечно-сосудистыми заболеваниями, например, таких как ACE, SIRT1, TERC, FOXO1, FOXO3, APOE, NOS3. Для 26 генов, участвующих в представленных молекулярных механизмах сосудистого старения, приведены сайты функциональных полиморфизмов. Понимание основных вызванных возрастом патофизиологических изменений в сосудистой стенке дает возможность выбора превентивной стратегии. В заключение обсуждаются современные подходы для лучшего прогнозирования генетического риска на примере визуализации сети генов сосудистого старения.
Ключевые слова
Об авторах
А. А. СлепухинаРоссия
Слепухина Анастасия Александровна — младший научный сотрудник лаборатории персонализированной медицины.
Новосибирск
Конфликт интересов: Конфликт интересов не заявляется
Е. М. Зеленская
Россия
Младший научный сотрудник лаборатории персонализированной медицины.
Новосибирск
Конфликт интересов: Конфликт интересов не заявляется
Г. И. Лифшиц
Доктор медицинских наук, профессор, заведующий лабораторией персонализированной медицины, профессор кафедры внутренних болезней Новосибирского государственного университета
Конфликт интересов: Конфликт интеерсов не заявляется
Список литературы
1. Benetos A, Petrovic M, Strandberg T. Hypertension Management in Older and Frail Older Patients. Circ Res. 2019;124(7):1045-1060. doi:10.1161/CIRCRESAHA.118.313236.
2. Jia G, Aroor AR, DeMarco VG, et al. Vascular stiffness in insulin resistance and obesity. Front Physiol. 2015;6:231. doi:10.3389/fphys.2015.00231.
3. Niiranen TJ, Kalesan B, Larson MG, et al. Aortic-Brachial Arterial Stiffness Gradient and Cardiovascular Risk in the Community. Hypertension. 2017;69(6):1022-1028. doi:101161/ HYPERTENSIONAHA.116.08917
4. Hohensinner PJ, Kaun C, Buchberger E, et al. Age intrinsic loss of telomere protection via TRF1 reduction in endothelial cells. Biochim Biophys Acta — Mol Cell Res. 2016;1863(2):360-367. doi:10.1016/J.BBAMCR.2015.11.034.
5. Rossman MJ, Kaplon RE, Hill SD, et al. Endothelial cell senescence with aging in healthy humans: prevention by habitual exercise and relation to vascular endothelial function. Am J Physiol Circ Physiol. 2017;313(5):H890-H895. doi:10.1152/ajpheart.00416.2017.
6. Uryga AK, Bennett MR. Ageing induced vascular smooth muscle cell senescence in atherosclerosis. J Physiol. 2016;594(8):2115-2124. doi:10.1113/JP270923.
7. Donato AJ, Morgan RG, Walker AE, et al. Cellular and molecular biology of aging endothelial cells. J Mol Cell Cardiol. 2015;89(Pt B):122-35. doi:10.1016/j.yjmcc.2015.01.021.
8. Ungvari Z, Tarantini S, Donato AJ, et al. Mechanisms of Vascular Aging. Circ Res. 2018;123(7):849-867. doi:10.1161/CIRCRESAHA.118.311378.
9. Khan SY, Awad EM, Oszwald A, et al. Premature senescence of endothelial cells upon chronic exposure to TNFa can be prevented by N-acetyl cysteine and plumericin. Sci Rep. 2017;7:39501. doi:10.1038/srep39501.
10. Katsuumi G, Shimizu I, Yoshida Y, et al. Vascular Senescence in Cardiovascular and Metabolic Diseases. Front Cardiovasc Med. 2018;5:18. doi:10.3389/fcvm.2018.00018.
11. Yeh JK, Wang CY. Telomeres and Telomerase in Cardiovascular Diseases. Genes (Basel). 2016;7(9). doi:10.3390/genes7090058.
12. Zgheib NK, Sleiman F, Nasreddine L, et al. Short Telomere Length is Associated with Aging, Central Obesity, Poor Sleep and Hypertension in Lebanese Individuals. Aging Dis. 2018;9(1):77-89. doi:10.14336/AD.2017.0310.
13. Kitada M, Ogura Y, Koya D. The protective role of Sirt1 in vascular tissue: its relationship to vascular aging and atherosclerosis. Aging (Albany NY). 2016;8(10):2290-2307. doi:10.18632/aging.101068.
14. Zarzuelo MJ, Lopez-SepOlveda R, Sanchez M, et al. SIRT1 inhibits NADPH oxidase activation and protects endothelial function in the rat aorta: implications for vascular aging. Biochem Pharmacol. 2013;85(9):1288-96. doi:10.1016/j.bcp.2013.02.015.
15. Wang YQ, Cao Q, Wang F, et al. SIRT1 Protects Against Oxidative Stress-Induced Endothelial Progenitor Cells Apoptosis by Inhibiting FOXO3a via FOXO3a Ubiquitination and Degradation. J Cell Physiol. 2015;230(9):2098-2107 doi:10.1002/jcp.24938.
16. Abbas M, Jesel L, Auger C, et al. Endothelial Microparticles From Acute Coronary Syndrome Patients Induce Premature Coronary Artery Endothelial Cell Aging and Thrombogenicity. Circulation. 2017;135(3):280-296. doi:10.1161/CIRCULATIONAHA.116.017513.
17. Mikael L de R, Paiva AMG de, Gomes MM, et al. Vascular Aging and Arterial Stiffness. Arq Bras Cardiol. 2017. doi:10.5935/abc.20170091.
18. Park S, Lee JY, Kim BK, et al. Lack of association between arterial stiffness and genetic variants by genome-wide association scan. Blood Press. 2015;24(4):258-261. doi:10.310 9/08037051.2015.1049430.
19. Mitchell GF, Verwoert GC, Tarasov KV, et al. Common genetic variation in the 3'-BCL11B gene desert is associated with carotid-femoral pulse wave velocity and excess cardiovascular disease risk: the AortaGen Consortium. Circ Cardiovasc Genet. 2012;5(1):81-90. doi:10.1161/CIRCGENETICS.111.959817.
20. Zhang JX, Wang ZM, Zhang JJ, et al. Association of glutathione peroxidase-1 (GPx-1) rs1050450 Pro198Leu and Pro197Leu polymorphisms with cardiovascular risk: a metaanalysis of observational studies. J Geriatr Cardiol. 2014;11(2):141-50. doi:10.3969/j.issn.1671-5411.2014.02.003.
21. Candas D, Li JJ. MnSOD in oxidative stress response-potential regulation via mitochondrial protein influx. Antioxid Redox Signal. 2014;20(10):1599-1617 doi:10.1089/ars.2013.5305.
22. Yin J, Wang X, Li S, et al. Interactions between plasma copper concentrations and SOD1 gene polymorphism for impaired glucose regulation and type 2 diabetes. Redox Biol. 2019;24:101172. doi:10.1016/j.redox.2019.101172.
23. Stasia MJ. CYBA encoding p22(phox), the cytochrome b558 alpha polypeptide: gene structure, expression, role and physiopathology. Gene. 2016;586(1):27-35. doi :10.1016/j.gene.2016.03.050.
24. Codd V, Mangino M, Van Der Harst P, et al. Common variants near TERC are associated with mean telomere length. Nat Genet. 2010;42(3):197-199. doi:10.1038/ng.532.
25. Mangino M, Christiansen L, Stone R, et al. DCAF4, a novel gene associated with leucocyte telomere length. J Med Genet. 2015;52(3):157-62. doi:101136/jmedgenet-2014-102681.
26. Yamac AH, Uysal O, Ismailoglu Z, et al. Premature Myocardial Infarction: Genetic Variations in SIRT1 Affect DiseaseSusceptibility. Cardiol Res Pract. 2019;2019:8921806. doi:10.1155/2019/8921806.
27. Bao J-M, Song X-L, Hong Y-Q, et al. Association between FOXO3A gene polymorphisms and human longevity: a meta-analysis. Asian J Androl. 2014;16(3):446-52. doi:10.4103/1008-682X.123673.
28. Pilling LC, Atkins JL, Bowman K, et al. Human longevity is influenced by many genetic variants: Evidence from 75,000 UK Biobank participants. Aging (Albany NY). 2016;8(3):547-560. doi:10.18632/aging.100930.
29. TenNapel MJ, Lynch CF, Burns TL, et al. SIRT6 Minor Allele Genotype Is Associated with >5-Year Decrease in Lifespan in an Aged Cohort. Nazir A, ed. PLoS One. 2014;9(12):e115616. doi:10.1371/journal.pone.0115616.
30. Yu JH, Baik I, Cho HJ, et al. The FTO rs9939609 polymorphism is associated with short leukocyte telomere length in nonobese individuals. Medicine (Baltimore). 2017;96(30):e7565. doi:10.1097/MD.0000000000007565.
31. Cosenso-Martin LN, Vaz-de-Melo RO, Pereira LR, et al. Angiotensin-converting enzyme insertion/deletion polymorphism, 24-h blood pressure profile and left ventricular hypertrophy in hypertensive individuals: a cross-sectional study. Eur J Med Res. 2015;20(1):74. doi:10.1186/s40001-015-0166-9.
32. Yao R, Du YYY, Zhang YZZ, et al. Association between G-217A polymorphism in the AGT gene and essential hypertension: a meta-analysis. 2015;14:5527-5534. doi:10.4238/2015. May.25.4.
33. Jazwiec P, Gac P, Chaszczewska-Markowska M, et al. Genetically determined enlargement of carotid body evaluated using computed angiotomography. Respir Physiol Neurobiol. 2018;254:10-15. doi:10.1016/j.resp.2018.04.001.
34. Verweij N, Mahmud H, Leach IM, et al. Genome-Wide Association Study on Plasma Levels of Midregional-Proadrenomedullin and C-Terminal-Pro-Endothelin-1. Hypertension. 2013;61(3):602-608. doi:10.1161/HYPERTENSIONAHA.111.203117.
35. Jiao YR, Wang W, Lei PC, et al. 5-HTT, BMPR2, EDN1, ENG, KCNA5 gene polymorphisms and susceptibility to pulmonary arterial hypertension: A meta-analysis. Gene. 2019;680:34-42. doi:10.1016/j.gene.2018.09.020.
36. Xie X, Shi X, Xun X, at al. Endothelial nitric oxide synthase gene single nucleotide polymorphisms and the risk of hypertension: A meta-analysis involving 63,258 subjects. Clin Exp Hypertens. 2017;39(2):175-182. doi:10.1080/10641963.2016.1235177.
37. Kim M, Yoo HJ, Lee HJ, et al. Longitudinal interaction between APOA5 -1131T>C and overweight in the acceleration of age-related increase in arterial stiffness through the regulation of circulating triglycerides. Hypertens Res. 2019;42(2):241 -248. doi:10.1038/s41440-018-0137-y.
38. Zhao C, Zhu P, Shen Q, et al. Prospective association of a genetic risk score with major adverse cardiovascular events in patients with coronary artery disease. Medicine (Baltimore). 2017;96(51):e9473. doi:10.1097/MD.0000000000009473.
39. Cambronero FE, Liu D, Neal JE, et al. APOE genotype modifies the association between central arterial stiffening and cognition in older adults. Neurobiol Aging. 2018;67:120-127. doi:10.1016/j.neurobiolaging.2018.02.009.
40. Fan W, Qu X, Li J, et al. Associations between polymorphisms of the ADIPOQ gene and hypertension risk: a systematic and meta-analysis. Sci Rep. 2017;7:41683. doi:10.1038/srep41683.
41. Mirmiran P, Esfandiar Z, Hosseini-Esfahani F, et al. Genetic variations of cholesteryl ester transfer protein and diet interactions in relation to lipid profiles and coronary heart disease: a systematic review. Nutr Metab (Lond). 2017;14(1):77 doi:10.1186/s12986-017-0231-1.
42. Wang Y, Huang Q, Liu J, et al. Vascular endothelial growth factor A polymorphisms are associated with increased risk of coronary heart disease: a meta-analysis. Oncotarget. 2017;8(18):30539-30551. doi:10.18632/oncotarget.15546.
43. Persu A, Evenepoel L, Jin Y, et al. STK39 and WNK1 Are Potential Hypertension Susceptibility Genes in the BELHYPGEN Cohort. Medicine (Baltimore). 2016;95(15):e2968. doi:10.1097/MD.0000000000002968.
44. Zheng H, Xu H, Cui B, et al. Association between polymorphism of the G-protein 03 subunit C825T and essential hypertension: an updated meta-analysis involving 36,802 subjects. Biol Res. 2013;46(3):265-73. doi:10.4067/S0716-97602013000300007.
45. Yao Y-S, Chang W-W, Jin Y-L. Association between TNF-a promoter -308G/A polymorphism and essential hypertension in the Asian population: A meta-analysis. J Renin Angiotensin Aldosterone Syst. 2017;18(4):1470320317741066. doi:10.1177/1470320317741066.
46. Warde-Farley D, Donaldson SL, Comes O, et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010;38(suppl_2):W214-W220. doi:10.1093/nar/gkq537.
47. Natarajan P, Young R, Stitziel NO, et al. Polygenic Risk Score Identifies Subgroup With Higher Burden of Atherosclerosis and Greater Relative Benefit From Statin Therapy in the Primary Prevention Setting. Circulation. 2017;135(22):2091-2101. doi:10.1161/CIRCULATIONAHA.116.024436.
48. Galmes S, Cifre M, Palou A, et al. A Genetic Score of Predisposition to Low-Grade Inflammation Associated with Obesity May Contribute to Discern Population at Risk for Metabolic Syndrome. Nutrients. 2019;11(2):298. doi:10.3390/nu11020298.
49. Pereira A, Mendonca MI, Borges S, et al. Genetic Risk Analysis of Coronary Artery Disease in a Population-based Study in Portugal, Using a Genetic Risk Score of 31 Variants. Arq Bras Cardiol. 2018;111(1):50-61. doi:10.5935/abc.20180107.
50. Oguz C, Sen SK, Davis AR, et al. Genotype-driven identification of a molecular network predictive of advanced coronary calcium in ClinSeq® and Framingham Heart Study cohorts. BMC Syst Biol. 2017;11(1):99. doi:10.1186/s12918-017-0474-5.
Рецензия
Для цитирования:
Слепухина А.А., Зеленская Е.М., Лифшиц Г.И. Генетические факторы риска сосудистого старения: молекулярные механизмы, полиморфизм генов-кандидатов и генные сети. Российский кардиологический журнал. 2019;(10):78-85. https://doi.org/10.15829/1560-4071-2019-10-78-85
For citation:
Slepukhina A.A., Zelenskaya E.M., Lifshits G.I. Genetic risk factors for vascular aging: molecular mechanisms, polymorphism of candidate genes and gene networks. Russian Journal of Cardiology. 2019;(10):78-85. (In Russ.) https://doi.org/10.15829/1560-4071-2019-10-78-85