Variants of RBM20 gene in pediatric patients with dilated cardiomyopathy
https://doi.org/10.15829/1560-4071-2019-10-92-99
Abstract
Aim. Description of three clinical cases of pediatric patients with dilated cardiomyopathy (DCMP) and an analysis of their genetic causes.
Material and methods. Using the method of targeted sequencing, data were obtained on the presence of pathogenic variants of the RBM20 gene in three pediatric patients with DCMP.
Results. Three cases of childhood DCMP development, associated with structural disorders in the RBM20 gene, are particularly described. It is known that RBM20 is involved in the splicing of mRNA of the TTN gene encoding the titin protein. A splicing disorder associated with pathogenic variants in the RBM20 gene can lead to a change in biomechanical and signaling processes in myocardial cells, causing pathological dilated remodeling and rhythm disorders.
Conclusion. Variants in the RBM20 gene are associated with severe DCMP with a childhood debut. In some cases, the progression of RBM20-associated cardiomyopathies is associated with an infectious disease. Further study of the molecular mechanisms of the pathogenesis of DCMP associated with pathogenic variants in the TTN and RBM20 genes is extremely relevant for both clinical cardiology and fundamental medicine.
About the Authors
A. M. KiselevRussian Federation
St. Petersburg
Competing Interests: not
T. L. Vershinina
Russian Federation
St. Petersburg
Competing Interests: not
S. I. Tarnovskaya
Russian Federation
St. Petersburg
Competing Interests: not
E. V. Yakovleva
Russian Federation
St. Petersburg
Competing Interests: not
L. Butish
Russian Federation
St. Petersburg
Competing Interests: not
Yu. V. Fomicheva
Russian Federation
St. Petersburg
Competing Interests: not
P. A. Fedotov
Russian Federation
St. Petersburg
Competing Interests: not
A. A. Kozyreva
Russian Federation
St. Petersburg
Competing Interests: not
Yu. A. Vakhrushev
Russian Federation
St. Petersburg
Competing Interests: not
A. K. Latypov
Russian Federation
St. Petersburg
Competing Interests: not
A. А. Morozov
Russian Federation
St. Petersburg
Competing Interests: not
I. A. Kozyrev
Russian Federation
St. Petersburg
Competing Interests: not
T. M. Pervunina
Russian Federation
St. Petersburg
Competing Interests: not
E. S. Vasichkina
Russian Federation
St. Petersburg
Competing Interests: not
A. A. Kostareva
Russian Federation
St. Petersburg
Competing Interests: not
References
1. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009 Jul 15;25(14):1754-60. doi:10.1093/bioinformatics/btp324
2. DePristo MA, Banks E, Poplin R, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011 May;43(5):491-8. doi:10.1038/ng.806
3. McKenna A, Hanna M, Banks E, et al.The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010 Sep;20(9):1297-303. doi: 10.1101/gr.107524.110
4. Van der Auwera GA, Carneiro MO, Hartl C, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013;43:11.10.1-33. doi:10.1002/0471250953.bi1110s43
5. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010 Sep;38(16):e164. doi:10.1093/nar/gkq603
6. Cingolani P, Platts A, Wang le L, et al.A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012 Apr-Jun;6(2):80-92. doi:10.4161/fly.19695
7. Gando I, Morganstein J, Jana K, McDonald TV, Tang Y, Coetzee WA. Infant sudden death: Mutations responsible for impaired Nav1.5 channel trafficking and function. Pacing Clin Electrophysiol. 2017 Jun;40(6):703-712. doi:10.1111/pace.13087
8. Watanabe T, Kimura A, Kuroyanagi H. Alternative Splicing Regulator RBM20 and Cardiomyopathy. Front Mol Biosci. 2018 Nov 28;5:105. doi:10.3389/fmolb.2018.00105
9. Zerbino DR, Achuthan P, Akanni W, et al. Ensembl 2018. Nucleic Acids Res. 2018 Jan 4;46(D1):D754-D761. doi: 10.1093/nar/gkx1098
10. Coelho MB, Attig J, Ule J, Smith CWJ. Matrin3: connecting gene expression with the nuclear matrix. . Wiley Interdiscip Rev RNA. 2016 May;7(3):303-15. doi:10.1002/wrna.1336
11. Beqqali A. Alternative splicing in cardiomyopathy. Biophys Rev. 2018 Aug;10(4):1061-1071. doi: 10.1007/s12551-018-0439-y
12. Li S, Guo W, Dewey CN, Greaser ML. Rbm20 regulates titin alternative splicing as a splicing repressor. Nucleic Acids Res. 2013 Feb 1;41(4):2659-72. doi:10.1093/nar/gks1362
13. Maatz H, Jens M, Liss M, et al. RNA-binding protein RBM20 represses splicing to orchestrate cardiac pre-mRNA processing. J Clin Invest. 2014 Aug;124(8):3419-30. doi: 10.1172/JCI74523
14. Brauch KM, Karst ML, Herron KJ, et al. Mutations in ribonucleic acid binding protein gene cause familial dilated cardiomyopathy. J Am Coll Cardiol. 2009 Sep 1;54(10):930-41. doi: 10.1016/j.jacc.2009.05.038
15. Li D, Morales A, Gonzalez-Quintana J, et al. Identification of novel mutations in RBM20 in patients with dilated cardiomyopathy. Clin Transl Sci. 2010 Jun;3(3):90-7. doi:10.1111/j.1752-8062.2010.00198.x
16. Refaat MM, Lubitz SA, Makino S, et al. Genetic variation in the alternative splicing regulator RBM20 is associated with dilated cardiomyopathy. Heart Rhythm. 2012 Mar;9(3):390-6. doi: 10.1016/j.hrthm.2011.10.016
17. Rexiati M, Sun M, Guo W. Muscle-Specific Mis-Splicing and Heart Disease Exemplified by RBM20. Genes (Basel). 2018 Jan 5;9(1). pii: E18. doi:10.3390/genes9010018
18. Zahr HC, Jaalouk DE. Exploring the Crosstalk Between LMNA and Splicing Machinery Gene Mutations in Dilated Cardiomyopathy. Front Genet. 2018 Jul 9;9:231. doi: 10.3389/fgene.2018.00231
19. Brauch KM, Karst ML, Herron KJ, et al. Mutations in Ribonucleic Acid Binding Protein Gene Cause Familial Dilated Cardiomyopathy . J Am Coll Cardiol. 2009 Sep 1;54(10):930-41. doi:10.1016/j.jacc.2009.05.038
20. Li D, Morales A, Gonzalez-Quintana J, et al. Identification of Novel Mutations in RBM20 in Patients with Dilated Cardiomyopathy. Clin Transl Sci. 2010 Jun;3(3):90-7. doi:10.1111/j.1752-8062.2010.00198.x
21. Kayvanpour E, Sedaghat-Hamedani F, Amr A, et al. Genotype-phenotype associations in dilated cardiomyopathy: meta-analysis on more than 8000 individuals. Clin Res Cardiol. 2017 Feb;106(2):127-139. doi: 10.1007/s00392-016-1033-6
22. Pugh TJ, Kelly MA, Gowrisankar S, et al. The landscape of genetic variation in dilated cardiomyopathy as surveyed by clinical DNA sequencing. Genet. Med. Off. J. Am. Coll. Med. Genet. 16(8), 601–608 (2014).
23. Guo W, Bharmal SJ, Esbona K, Greaser ML. Titin diversity-alternative splicing gone wild. J Biomed Biotechnol. 2010;2010:753675. doi: 10.1155/2010/753675
24. Guo W, Schafer S, Greaser ML, et al. RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. . Nat Med. 2012 May;18(5):766-73. doi: 10.1038/nm.2693
25. Li S, Guo W, Dewey CN, Greaser ML. Rbm20 regulates titin alternative splicing as a splicing repressor. Nucleic Acids Res. 2013 Feb 1;41(4):2659-72. doi:10.1093/nar/gks1362
26. Kontrogianni-Konstantopoulos A, Ackermann MA, Bowman AL, Yap SV, Bloch RJ. Muscle giants: molecular scaffolds in sarcomerogenesis . Physiol Rev. 2009Oct;89(4):1217-67. doi: 10.1152/physrev.00017.2009
27. Puchner EM, Alexandrovich A, Kho AL, et al. Mechanoenzymatics of titin kinase. Proc Natl Acad Sci U S A. 2008 Sep 9;105(36):13385-90. doi:10.1073/pnas.0805034105
28. Tskhovrebova L, Trinick J. Properties of titin immunoglobulin and fibronectin-3 domains. J Biol Chem. 2004 Nov 5;279(45):46351-4. doi: 10.1074/jbc.R400023200
29. Freiburg A, Trombitas K, Hell W, et al. Series of exon-skipping events in the elastic spring region of titin as the structural basis for myofibrillar elastic diversity. Circ Res. 2000 Jun 9;86(11):1114-21. doi: 10.1161/01.RES.86.11.1114
30. Linke WA, Krüger M. The giant protein titin as an integrator of myocyte signaling pathways. Physiology (Bethesda). 2010 Jun;25(3):186-98. doi:10.1152/physiol.00005.2010
31. Lahmers S, Wu Y, Call DR, Labeit S, Granzier H. Developmental control of titin isoform expression and passive stiffness in fetal and neonatal myocardium. Circ Res. 2004 Mar 5;94(4):505-13. doi:10.1161/01.RES.0000115522.52554.86
32. Makarenko I, Opitz CA, Leake MC, et al. Passive stiffness changes caused by upregulation of compliant titin isoforms in human dilated cardiomyopathy hearts. Circ Res. 2004 Oct 1;95(7):708-16. doi: 10.1161/01.RES.0000143901.37063.2f
33. Warren CM, Krzesinski PR, Campbell KS, Moss RL, Greaser ML. Titin isoform changes in rat myocardium during development. Mech Dev. 2004 Nov;121(11):1301-12. doi: DOI: 10.1016/j.mod.2004.07.003.
34. Ottenheijm CA, Hidalgo C, Rost K, Gotthardt M, Granzier H. Altered contractility of skeletal muscle in mice deficient in titin's M-band region. J Mol Biol. 2009 Oct 16;393(1):10-26. doi: 10.1016/j.jmb.2009.08.009
35. Gammill HS, Chettier R, Brewer A, et al. Cardiomyopathy and Preeclampsia. Circulation. 2018 Nov 20;138(21):2359-2366. doi:10.1161/CIRCULATIONAHA.117.031527.
36. Ware JS, Li J, Mazaika E, et al. Shared Genetic Predisposition in Peripartum and Dilated Cardiomyopathies. N Engl J Med. 2016 Jun 30;374(26):2601. doi:10.1056/NEJMc1602671
37. van Spaendonck-Zwarts KY, Posafalvi A, van den Berg MP, et al. Titin gene mutations are common in families with both peripartum cardiomyopathy and dilated cardiomyopathy. Eur Heart J. 2014 Aug 21;35(32):2165-73. doi:10.1093/eurheartj/ehu050
Review
For citations:
Kiselev A.M., Vershinina T.L., Tarnovskaya S.I., Yakovleva E.V., Butish L., Fomicheva Yu.V., Fedotov P.A., Kozyreva A.A., Vakhrushev Yu.A., Latypov A.K., Morozov A.А., Kozyrev I.A., Pervunina T.M., Vasichkina E.S., Kostareva A.A. Variants of RBM20 gene in pediatric patients with dilated cardiomyopathy. Russian Journal of Cardiology. 2019;(10):92-99. (In Russ.) https://doi.org/10.15829/1560-4071-2019-10-92-99