Preview

Russian Journal of Cardiology

Advanced search

Secondary hyperlipidemias: etiology and pathogenesis

Abstract

In accordance with modern clinical guidelines, the main aim of therapy for cardiovascular risk reducing is achievement of target level of lipid parameters. Some common diseases, medications prescribed in routine clinical practice, as well as dietary disorders can cause the development of lipid metabolism disorders, called secondary hyperlipidemias. Identification and treatment (or elimination) of secondary causes of hyperlipidemia may contribute to the effectiveness of treatment of patients with lipid metabolism disorders. This review presents the underlying conditions and pathogenetic mechanisms responsible for the development of secondary hyperlipidemia.

About the Authors

A. I. Ershova
National Medical Research Center for Preventive Medicine
Russian Federation

Moscow


Competing Interests:

nothing to declare



D. O. Al Rashi
I. M. Sechenov First Moscow State Medical University
Russian Federation

Moscow


Competing Interests:

nothing to declare



A. A. Ivanova
I.M. Sechenov First Moscow State Medical University
Russian Federation

Moscow


Competing Interests:

nothing to declare



Yu. O. Aksenova
I. M. Sechenov First Moscow State Medical University
Russian Federation

Moscow


Competing Interests:

nothing to declare



A. N. Meshkov
National Medical Research Center for Preventive Medicine
Russian Federation

Moscow


Competing Interests:

nothing to declare



References

1. Catapano AL, Graham I, De Backer G, et al. 2016 ESC/EAS Guidelines for the Management of Dyslipidaemias. Eur Heart J. 2016 Oct 14;37 (39):2999-3058. doi:101093/eurheartj/ehw272.

2. Reiner Z, Catapano AL, De Backer G, et al. ESC/EAS Guidelines for the management of dyslipidaemias: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur Heart J. 2011 Jul;32 (14):1769-818. doi:10.1093/eurheartj/ehr158.

3. Diagnostics and correction of lipid metabolism disorders in order to prevent and treat atherosclerosis. Russian recommendations VI revision. Atherosclerosis and dyslipidemias. 2017;3 (28):5-22. (In Russ.)

4. Vodnala D, Rubenfire M, Brook RD. Secondary causes of dyslipidemia. Am J Cardiol. 2012 Sep 15;110 (6):823-5. doi:10.1016/j.amjcard.2012.04.062.

5. Meshkov AN, Ershova AI, Deev AD, et al. Distribution of lipid profile values in economically active men and women in Russian Federation results of the ESSE-RF study for the years 2012-2014. Cardiovascular Therapy and Prevention. 2017;16 (4):62-7 (In Russ.) doi:10.15829/1728-8800-2017-4-62-67.

6. Elisaf M, Tsimihodimos V. Editorial: secondary dyslipidemias. Open Cardiovasc Med J. 2011;5:22-3. doi:10.2174/1874192401105010022.

7. Fernandez ML, West KL. Mechanisms by which dietary fatty acids modulate plasma lipids. J Nutr. 2005 Sep;135 (9):2075-8. doi:10.1093/jn/135.9.2075.

8. Takeuchi H, Sugano M. Industrial Trans Fatty Acid and Serum Cholesterol: The Allowable Dietary Level. J Lipids. 2017;2017:9751756. doi:10.1155/2017/9751756.

9. Emerson SR, Haub MD, Teeman CS, et al. Summation of blood glucose and TAG to characterise the 'metabolic load index'. Br J Nutr. 2016 Nov;116 (9):1553-63. doi:101017/S0007114516003585.

10. Carr RM, Ahima RS. Pathophysiology of lipid droplet proteins in liver diseases. ExpCellRes. 2016 Jan 15;340 (2):187-92. doi:10.1016/j.yexcr.2015.10.021.

11. Ress C, Kaser S. Mechanisms of intrahepatic triglyceride accumulation. World J Gastroenterol. 2016 Jan 28;22 (4):1664-73. doi:10.3748/wjg.v22.i4.1664.

12. Hussain AA, Hubel C, Hindborg M, et al. Increased lipid and lipoprotein concentrations in anorexia nervosa: A systematic review and meta-analysis. Int J Eat Disord. 2019 Mar 28 doi:10.1002/eat.23051.

13. Glenny EM, Bulik-Sullivan EC, Tang Q, et al. Eating Disorders and the Intestinal Microbiota: Mechanisms of Energy Homeostasis and Behavioral Influence. Curr Psychiatry Rep. 2017;19:51. doi:10.1007/s11920-017-0797-3.

14. Reinehr T, Isa A, de Sousa G, et al. Thyroid hormones and their relation to weight status. Horm Res. 2008;70 (1):51-7 doi:101159/000129678.

15. Klop B, Elte JW, Cabezas MC. Dyslipidemia in obesity: mechanisms and potential targets. Nutrients. 2013 Apr 12;5 (4):1218-40. doi:10.3390/nu5041218.

16. Clemente-Postigo M, Queipo-Ortuno MI, Fernandez-Garcia D, et al. Adipose tissue gene expression of factors related to lipid processing in obesity. PLoS One. 2011;6 (9): e24783. doi:10.1371/journal.pone.0024783.

17. Subramanian S, Chait A. Hypertriglyceridemia secondary to obesity and diabetes. Biochim Biophys Acta. 2012 May;1821 (5):819-25. doi:10.1016/j.bbalip.2011.10.003.

18. Verges B. Pathophysiology of diabetic dyslipidaemia: where are we? Diabetologia. 2015 May;58 (5):886-99. doi:10.1007/s00125-015-3525-8.

19. Masuda D, Yamashita S. Postprandial hyperlipidemia and remnant lipoproteins. J AtherosclerThromb. 2017 Feb 1;24 (2):95-109. doi:10.5551/jat.RV16003.

20. Kohan AB: Apolipoprotein C-III: a potent modulator of hypertriglyceridemia and cardiovascular disease. Curr Opin Endocrinol Diabetes Obes. 2015;22:119-25 doi:10.1097/MED.0000000000000136.

21. Hirano T. Pathophysiology of diabetic dyslipidemia. J AtherosclerThromb. 2018 Sep 1;25 (9):771-82. doi:10.5551/jat.RV17023.

22. Khavandi M, Duarte F, Ginsberg HN, et al. Treatment of Dyslipidemias to Prevent Cardiovascular Disease in Patients with Type 2 Diabetes. Curr Cardiol Rep. 2017;19 (1):7 doi:10.1007/s11886-017-0818-1.

23. Mikolasevic I, Milic S, Turk Wensveen T, et al. Nonalcoholic fatty liver disease — A multisystem disease? World J Gastroenterol. 2016 Nov 21;22 (43):9488-505. doi:10.3748/wjg.v22.i43.9488.

24. Neuschwander-Tetri BA. Non-alcoholic fatty liver disease. BMC Med. 2017 Feb 28; 15 (1):45. doi:10.1186/s12916-017-0806-8.

25. Fick T, Jack J, Pyle-Eilola AL, et al. Severe hypertriglyceridemia at new onset type 1 diabetes mellitus. J Pediatr Endocrinol Metab. 2017 Aug 28;30 (8):893-7 doi:10.1515/jpem-2017-0008.

26. Bates GW, Legro RS. Long term management of Polycystic Ovarian Syndrome (PCOS). Mol Cell Endocrinol. 2013 Jul 5;373 (1-2):91-7 doi:10.1016/j.mce.2012.10.029.

27. Duntas LH, Brenta G. The effect of thyroid disorders on lipid levels and metabolism. Med Clin North Am. 2012 Mar;96 (2):269-81. doi:10.1016/j.mcna.2012.01.012.

28. Lopez D, Abisambra Socarras JF, Bedi M, et al. Activation of the hepatic LDL receptor promoter by thyroid hormone. Biochim Biophys Acta. 2007 Sep;1771 (9):1216-25. doi:10.1016/j.bbalip.2007.05.001.

29. Goldberg IJ, Huang LS, Huggins LA, et al. Thyroid hormone reduces cholesterol via a non-LDL receptor-mediated pathway. Endocrinology. 2012;153 (11):5143-9. doi:10.1210/en.2012-1572.

30. Jeong HJ, Lee HS, Kim KS, et al. Sterol-dependent regulation of proprotein convertase subtilisin/kexin type 9 expression by sterol-regulatory element binding protein-2. J Lipid Res. 2008 Feb;49 (2):399-409. doi:10.1194/jlr.M700443-JLR200.

31. Fugier C, Tousaint JJ, Prieur X, et al. The lipoprotein lipase inhibitor ANGPTL3 is negatively regulated by thyroid hormone. J Biol Chem. 2006;281:11553-9. doi:10.1074/jbc.M5125 54200.

32. Rizos CV, Elisaf MS, Liberopoulos EN. Effects of Thyroid Dysfunction on Lipid Profile. Open Cardiovasc Med J. 2011;5:76-84. doi:10.2174/1874192401105010076.

33. Peckett AJ, Wright DC, Riddell MC. The effects of glucocorticoids on adipose tissue lipid metabolism. Metabolism. 2011 Nov;60 (11):1500-10. doi:10.1016/j.metabol.2011.06.012.

34. Xu C, He J, Jiang H, et al. Direct effect of glucocorticoids on lipolysis in adipocytes. Mol Endocrinol. 2009;23 (8):1161-70. doi:10.1210/me.2008-0464.

35. Adam TC, Epel ES. Stress, eating and the reward system. Physiol Behav. 2007 Jul 24;91 (4):449-58 doi:10.1016/j.physbeh.2007.04.011.

36. Epel E, Lapidus R, McEwen B, et al. Stress may add bite to appetite in women: a laboratory study of stress-induced cortisol and eating behavior. Psychoneuroendocrinology 2001;26 (1):37-49. doi:101016/S0306-4530(00)00035-4.

37. Nasioudis D, Doulaveris G, Kanninen TT. Dyslipidemia in pregnancy and maternal-fetal outcome. Minerva Ginecol. 2019 Apr;71 (2):155-62. doi:10.23736/S0026-4784.18.04330-7.

38. Grimes SB, Wild R. Effect of Pregnancy on Lipid Metabolism and Lipoprotein Levels. SourceEndotext [Internet]. South Dartmouth (MA): MDText. com, Inc.; 2000-2018 Feb 20.

39. Vaziri ND, Yuan J, Ni Z, et al. Lipoprotein lipase deficiency in chronic kidney disease is accompanied by down-regulation of endothelial GPIHBP1 expression. Clin Exp Nephrol. 2011;16 (2):238-43. doi:10.1007/s10157-011-0549-3.

40. Clement LC, Mace C, Avila-Casado C, et al. Circulating angiopoietin-like 4 links proteinuria with hypertriglyceridemia in nephrotic syndrome. Nat Med. 2013;20 (1):37-46. doi:10.1038/nm.3396.

41. Liu S, Vaziri ND. Role of PCSK9 and IDOL in the pathogenesis of acquired LDL receptor deficiency and hypercholesterolemia in nephrotic syndrome. Nephrol Dial Transplant. 2014 Mar;29 (3):538-43. doi:10.1093/ndt/gft439.

42. Mikolasevic I, Zutelija M, Mavrinac V, et al. Dyslipidemia in patients with chronic kidney disease: etiology and management. Int J Nephrol Renovasc Dis. 2017;10:35-45. doi:10.2147/IJNRD.S101808.

43. Chan DT, Dogra GK, Irish AB, et al. Chronic kidney disease delays VLDL-apoB-100 particle catabolism: potential role of apolipoprotein C-III. J Lipid Res. 2009;50 (12):2524-31. doi:10.1194/jlr.P900003-JLR200.

44. Han CY. Update on FXR Biology: Promising Therapeutic Target. Int J Mol Sci. 2018;19 (7):2069. doi:10.3390/ijms19072069.

45. Schaap FG, van der Gaag NA, Gouma DJ, et al. High expression of the bile salt-homeostatic hormone fibroblast growth factor 19 in the liver of patients with extrahepatic cholestasis. Hepatology. 2009 Apr;49 (4):1228-35 doi:10.1002/hep.22771.

46. Heimerl S, Boettcher A, Kaul H, et al. Lipid profiling of lipoprotein X: Implications for dyslipidemia in cholestasis. Biochim Biophys Acta. 2016 Aug; 1861 (8 Pt A):681-7 doi:10.1016/j.bbalip.2016.04.016.

47. Smith, D. A. Lipoprotein-X in a Patient with Lymphoplasmacytic Sclerosing Cholangitis: An Unusual Cause of Secondary Hypercholesterolemia. AACE Clinical Case Reports. 2016;2 (1): e76-e77. doi:10.4158/ep15726.co.

48. Misselwitz B, Goede JS, Pestalozzi BC, et al. Hyperlipidemic myeloma: review of 53 cases. AnnHematol. 2010 Jun;89 (6):569-77 doi:10.1007/s00277-009-0849-9.

49. Lilley JS, Linton MF, Fazio S. Oral retinoids and plasma lipids. Dermatol Ther. 2013 Sep-Oct;26 (5):404-10. doi:10.1111/dth.12085.

50. Ballantyne C. Clinical Lipidology: A Companion to Braunwald's Heart Disease. 2nd Edition. Elsevier, 2014. p. 568. ISBN: 9780323287869.


Review

For citations:


Ershova A.I., Al Rashi D.O., Ivanova A.A., Aksenova Yu.O., Meshkov A.N. Secondary hyperlipidemias: etiology and pathogenesis. Russian Journal of Cardiology. 2019;(5):74-81. (In Russ.)

Views: 2726


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)