Preview

Russian Journal of Cardiology

Advanced search

The role of immune cells in the development of adipose tissue dysfunction in cardiovascular diseases

https://doi.org/10.15829/1560-4071-2019-4-92-98

Abstract

Adipose tissue dysfunction characterized by a loss of homeostatic functions It is observed in patients with obesity, insulin resistance and diabetes. In case of violation of the physiological properties in adipose tissue, an increased production of cytokines and chemokines occurs with the infiltration of tissue by immune cells. In turn, immune cells also produce cytokines, metalloproteinases, reactive oxygen species and chemokines, which are involved in tissue remodeling, cellular signal transduction and immunity regulation. The presence of inflammatory cells in adipose tissue affects organs and tissues. So in the blood vessels, inflammation of perivascular adipose tissue leads to vascular remodeling, superoxide production, endothelial dysfunction with loss of the bioavailability of nitric oxide, contributing to the development of various vascular diseases. In adipose tissue dysfunction, adipokines are also produced, such as leptin, resistin, and visfatin. These substances contribute to metabolic dysfunction, alter systemic homeostasis, sympathetic outflow, glucose regulation, and insulin sensitivity. Thus, the study of the mechanisms of interaction between immune cells and adipose tissue is promising and may be an important therapeutic target.

About the Authors

E. G. Uchasova
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation
Kemerovo


O. V. Gruzdeva
Research Institute for Complex Issues of Cardiovascular Diseases; Kemerovo State Medical University
Russian Federation
Kemerovo


Yu. A. Dyleva
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation
Kemerovo


E. V. Belik
Research Institute for Complex Issues of Cardiovascular Diseases
Russian Federation
Kemerovo


O. L. Barbarash
Research Institute for Complex Issues of Cardiovascular Diseases; Kemerovo State Medical University
Russian Federation
Kemerovo


References

1. Pirola L, Ferraz JC. Role of pro- and anti-inflammatory phenomena in the physiopathology of type 2 diabetes and obesity World J Biol Chem. 2017;8(2):120-8. doi:10.4331/wjbc.v8.i2.120.

2. Ott AV, Chumakova GA. Epicardial obesity as one of the basic criteria for metabolically unhealthy obesity phenotype and the predictor of subclinical atherosclerosis. Complex Issues of Cardiovascular Diseases. 2018;7(1):21-8. (In Russ.) doi:10.17802/2306-1278-2018-7-1-21-28.

3. Stevens GA, Singh GM, Lu Y, et al. National, regional, and global trends in adult overweight and obesity prevalences. Popul Health Metr. 2012;10:22. doi:10.1186/1478-7954-10-22.

4. Newton R, Priyadharshini B, Turka LA. Immunometabolism of regulatory T cells. Nat Immunol. 2016;17:618-25. doi:10.1038/ni.3466.

5. Ronti T, Lupattelli G, Mannarino E. The endocrine function of adipose tissue: an update. Clin Endocrinol (Oxf) 2006;64:355-65. doi:10.1111/j.1365-2265.2006.02474.x.

6. Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev. 2010;11(1):11-8. doi: 10.1111/j.1467-789X.2009.00623.x.

7. Lim S, Meigs JB. Ectopic fat and cardiometabolic and vascular risk. Int J Cardiol. 2013;169:166-76. doi:10.1016/j.ijcard.2013.08.077.

8. Weisberg SP, McCann D, Desai M, et al. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112:1796-808. doi:10.1172/JCI19246.

9. Xu HY, Barnes GT, Yang Q, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112:1821-30. doi:10.1172/JCI19451.

10. Lumeng CN, DeYoung SM, Bodzin JL, et al. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes. 2007;56:16-23.

11. Nosalski R, Guzik TJ. Perivascular adipose tissue inflammation in vascular disease. Br J Pharmacol. 2017;174:3496-513. doi:10.1111/bph.13705.

12. Guzik TJ, Skiba DS, Touyz RM, Harrison DG. The role of infiltrating immune cells in dysfunctional adipose tissue. Cardiovascular Research. 2017;113:1009-23. doi:10.1093/cvr/cvx108.

13. Cinti S. The adipose organ at a glance. Dis Model Mech. 2012;5(5):588-94. doi:10.1242/dmm.009662.

14. Tchernof A, Després JP. Pathophysiology of human visceral obesity: an update. Physiol Rev. 2013 Jan;93(1):359-404. doi:10.1152/physrev.00033.2011.

15. Lumeng CN, DelProposto JB, Westcott DJ, Saltiel AR. Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes. 2008;57:3239-46. doi:10.2337/db08-0872.

16. Wynn TA. Type 2 cytokines: mechanisms and therapeutic strategies. Nat Rev Immunol. 2015;15:271-82. doi:10.1038/nri3831.

17. Castoldi A, Naffah de Souza C, et al. The macrophage switch in obesity development. Front Immunol. 2015;6:637. doi:10.3389/fimmu.2015.00637.

18. Okada M, Iwabu M, Ueki K, et al. Perspective of small-molecule adipor agonist for type 2 diabetes and short life in obesity. Diabetes Metab J. 2015;39:363-72. doi:10.4093/dmj.2015.39.5.363.

19. van Stijn CM, Kim J, Lusis AJ, et al. Macrophage polarization phenotype regulates adiponectin receptor expression and adiponectin anti-inflammatory response. FASEB J. 2015;29:636-49. doi:10.1096/fj.14-253831.

20. Shimizu T, Yamakuchi M, Biswas KK, et al. HMGB1 is secreted by 3T3-L1 adipocyte through JNK signaling and the secretion is partially inhibited by adiponectin. Obesity (Silver Spring). 2016;24:1913. doi:10.1002/oby.21549.

21. Tian L, Luo N, Zhu X, et al. Adiponectin- AdipoR1/2-APPL1 signaling axis suppresses human foam cell formation: differential ability of AdipoR1 and AdipoR2 to regulate inflammatory cytokine responses. Atherosclerosis. 2012;221:66-75. doi:10.1016/j.atherosclerosis.2011.12.014.

22. Titos E, Rius B, González-Périz A, et al. Resolvin D1 and its precursor docosahexaenoic acid promote resolution of adipose tissue inflammation by eliciting macrophage polarization toward an M2-like phenotype. J Immunol. 2011;187:5408-18. doi:10.4049/jimmunol.1100225.

23. Im DS. Functions of omega-3 fatty acids and FFA4 (GPR120) in macrophages. Eur J Pharmacol. 2016;785:36-43. doi:10.1016/j.ejphar.2015.03.094.

24. Mikolajczyk TP, Nosalski R, Szczepaniak P, et al. Role of chemokine RANTES in the regulation of perivascular inflammation, T-cell accumulation, and vascular dysfunction in hypertension. FASEB J. 2016;30:1987-99.

25. Marko L, Kvakan H, Park JK, et al. Interferon-gamma signaling inhibition ameliorates angiotensin II induced cardiac damage. Hypertension. 2012;60:1430-36. doi:10.1161/HYPERTENSIONAHA.112.199265.

26. Wu H, Ghosh S, Perrard XD, et al. T-cell accumulation and regulated on activation, normal T cell expressed and secreted upregulation in adipose tissue in obesity. Circulation. 2007;115:1029-38. doi:10.1161/CIRCULATIONAHA.106.638379.

27. Li Y, Kanellakis P, Hosseini H, et al. A CD1d-dependent lipid antagonist to NKT cells ameliorates atherosclerosis in ApoE-/- mice by reducing lesion necrosis and inflammation. Cardiovasc Res. 2016;109:305-17. doi:10.1093/cvr/cvv259.

28. Vieth JA, Das J, Ranaivoson FM, et al. Corrigendum: TCRα-TCRβ pairing controls recognition of CD1d and directs the development of adipose NKT cells. Nat Immunol. 2017;18:36-44. doi:10.1038/ni0817-951a.

29. Caillon A, Mian MO, Fraulob-Aquino JC, et al. Gamma delta T cells mediate angiotensin ii-induced hypertension and vascular injury. Circulation. 2017;135:2155-62. doi:10.1161/CIRCULATIONAHA.116.027058.

30. Zapata-Gonzalez F, Auguet T, Aragonès G, et al. Interleukin-17A Gene Expression in Morbidly Obese Women. Int J Mol Sci. 2015;16:17469-81. doi:10.3390/ijms160817469.

31. Sumarac-Dumanovic M, Stevanovic D, Ljubic A, et al. Increased activity of interleukin-23/ interleukin-17 proinflammatory axis in obese women. Int J Obes (Lond). 2009;33:151-56. doi:10.1038/ijo.2008.216.

32. Itani HA, McMaster WG, Saleh MA, et al. Activation of human T cells in hypertension: studies of humanized mice and hypertensive humans. Hypertension. 2016;68:123-32. doi:10.1161/HYPERTENSIONAHA.116.07237.

33. Skiba DS, Nosalski R, Mikolajczyk TP, et al. Antiatherosclerotic effect of Ang- (1-7) non-peptide mimetic (AVE 0991) is mediated by inhibition of perivascular and plaque inflammation in early atherosclerosis. Br J Pharmacol. 2016;174:4055-69. doi:10.1111/bph.13685.

34. McEver RP. Selectins: initiators of leucocyte adhesion and signalling at the vascular wall. Cardiovasc Res. 2015;107:331-9. doi:10.1093/cvr/cvv154.

35. Galkina E, Kadl A, Sanders J, et al. Lymphocyte recruitment into the aortic wall before and during development of atherosclerosis is partially L-selectin dependent. J Exp Med. 2006;203:1273-82. doi:10.1084/jem.20052205.

36. Sakamoto S, Tsuruda T, Hatakeyama K, et al. Impact of age-dependent adventitia inflammation on structural alteration of abdominal aorta in hyperlipidemic mice. PLoS One. 2014;9(8):e105739. doi:10.1371/journal.pone.0105739.

37. Foks AC, Van Puijvelde GH, Wolbert J, Kroner MJ, Frodermann V, Van Der Heijden T, Van Santbrink PJ, Boon L, Bot I, Kuiper J. CD11b.Gr-1. myeloid-derived suppressor cells reduce atherosclerotic lesion development in LDLr deficient mice. Cardiovasc Res. 2016;111:252-61.

38. Spear R, Boytard L, Blervaque R, et al. Adventitial tertiary lymphoid organs as potential source of MicroRNA biomarkers for abdominal aortic aneurysm. Int JMol Sci. 2015;16:11276-93. doi:10.3390/ijms160511276.

39. Clemen TM, Guedj K, Andreata F, et al. Control of the T follicular helper-germinal center B-cell axis by CD8(+) regulatory T cells limits atherosclerosis and tertiary lymphoid organ development. Circulation. 2015;131:560-70. doi:10.1161/CIRCULATIONAHA.114.010988.

40. Folkesson M, Vorkapic E, Gulbins E, et al. Inflammatory cells, ceramides, and expression of proteases in perivascular adipose tissue adjacent to human abdominal aortic aneurysms. J Vasc Surg. 2016;65,4:1171-9. doi:10.1016/j.jvs.2015.12.056.

41. Libby P, Ridker PM, Hansson GK Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473:317-25. doi:10.1038/nature10146.

42. Back M, Hansson GK. Anti‐inflammatory therapies for atherosclerosis. Nat Rev Cardiol. 2015;12:199-211 doi:10.1038/nrcardio.2015.5.

43. Ridker PM. Targeting inflammatory pathways for the treatment of cardiovascular disease. Eur Heart J. 2014;35:540-43. doi:10.1093/eurheartj/eht398.

44. Rajsheker S, Manka D, Blomkalns AL. Crosstalk between perivascular adipose tissue and blood vessels. Curr Opin Pharmacol. 2010;10(2):191-6. doi:10.1016/j.coph.2009.11.005.

45. Barbarash O, Gruzdeva O, Uchasova E, et al. Dose-dependent effects of atorvastatin on myocardial infarction. Drug Des Devel Ther. 2015 Jun 29;9:3361-8. doi:10.2147/DDDT.S86344.

46. Abe H, Onnishi J, Narusaka M, et al. Arabidopsis-thrips system for analysis of plant response to insect feeding. Plant Signal Behav. 2008;3(7):446-7.

47. Psarros C, Lee R, Margaritis M, Antoniades C. Nanomedicine for the prevention, treatment and imaging of atherosclerosis. Nanomedicine. 2012;8(1):59-68. doi:10.1016/j.nano.2012.05.006.


Review

For citations:


Uchasova E.G., Gruzdeva O.V., Dyleva Yu.A., Belik E.V., Barbarash O.L. The role of immune cells in the development of adipose tissue dysfunction in cardiovascular diseases. Russian Journal of Cardiology. 2019;(4):92-98. (In Russ.) https://doi.org/10.15829/1560-4071-2019-4-92-98

Views: 964


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)