Preview

Russian Journal of Cardiology

Advanced search

Modern understanding of mechanisms of bioprosthetic valve structural degeneration: a literature review

https://doi.org/10.15829/1560-4071-2018-11-145-152

Abstract

Bioprosthetic valves are often used to replace diseased heart valves. They differ from mechanical valves by optimal hemodynamic parameters and low thrombogenicity. However, although the durability of modern bioprosthetic valves, their design, and implantation procedures are being improved, the replacement of the native valve does not necessarily lead to favorable outcome, because valvular
defect is often replaced by “prosthetic valve disease”. Structural valve degeneration is one of the main causes of bioprosthetic valve failure, but its mechanisms have not been studied in detail. This review summarizes and analyzes current data on mechanisms responsible for bioprosthetic valve structural degeneration. These mechanisms include passive degeneration, inflammation, fibrosis and osteogenesis.

About the Authors

A. E. Kostyunin
Research Institute for Complex Issues of Cardiovascular Diseases.
Russian Federation


E. A. Ovcharenko
Research Institute for Complex Issues of Cardiovascular Diseases.
Russian Federation


K. Yu. Klyshnikov
Research Institute for Complex Issues of Cardiovascular Diseases.


References

1. Nishimura R.A., Otto C.M., Bonow R.O. et al. 2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology American Heart Association task force on clinical practice guidelines. Circulation 2017, 135(25):e1159–e1195. doi:10.1161/CIR.0000000000000503.

2. Baumgartner H., Falk V., Bax J.J. et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2017, 38(36):2739–2791. doi:10.1093/eurheartj/ehx391.

3. Capodanno D., Petronio A.S., Prendergast B. et al. Standardized definitions of structural deterioration and valve failure in assessing long-term durability of transcatheter and surgical aortic bioprosthetic valves: a consensus statement from the European Association of Percutaneous Cardiovascular Interventions (EAPCI) endorsed by the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur. J. Cardiothorac. Surg. 2017, 52(3):408–417. doi:10.1093/ejcts/ezx244.

4. Rezvova M.A., Kudryavceva Yu.A. Modern approaches to protein chemical modification in biological tissue, consequences and application. Bioorganicheskaia khimiia 2017, 44(1):1–16. doi:10.7868/S0132342318010025. Russian.

5. Schoen F.J., Levy R.J. Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann. Thorac. Surg. 2005, 79(3):1072–1080. doi:10.1016/j.athoracsur.2004.06.033

6. Mukhamadiyarov R.A., Rutkovskaya N.V., Milto I.V. et al. Investigation of the structure of a functionally intact xenopericardial bioconduit after long-term implantation. Arkhiv Patologii 2017, 79(5):25–33. doi:10.17116/patol201779525-33. Russian.

7. Pibarot P., Dumesnil J.G. Prosthetic heart valves: selection of the optimal prosthesis and long-term management. Circulation 2009, 119(7):1034–1048. doi:10.1161/CIRCULATIONAHA.108.778886.

8. Dvir D., Webb J.G., Bleiziffer S. et al. Transcatheter aortic valve implantation in failed bioprosthetic surgical valves. JAMA 2014, 312(2):162–170. doi:10.1001/jama.2014.7246.

9. Ribeiro A.H., Wender O.C., de Almeida A.S. et al. Comparison of clinical outcomes in patients undergoing mitral valve replacement with mechanical or biological substitutes: a 20 years cohort. BMC Cardiovasc. Disord. 2014, 14:146. doi:10.1186/1471-2261-14-146.

10. Arsalan M., Walther T. Durability of prostheses for transcatheter aortic valve implantation. Nat. Rev. Cardiol. 2016, 13(6):360–367. doi:10.1038/nrcardio.2016.43.

11. Paradis J.M., Del Trigo M., Puri R. et al. Transcatheter valve-in-valve and valve-in-ring for treating aortic and mitral surgical prosthetic dysfunction. J. Am. Coll. Cardiol. 2015, 66(18):2019–2037. doi:10.1016/j.jacc.2015.09.015.

12. Bourguignon T., Bouquiaux-Stablo A.L., Candolfi P. et al. Very long-term outcomes of the Carpentier-Edwards Perimount valve in aortic position. Ann. Thorac. Surg. 2015, 99(3):831–837. doi:10.1016/j.athoracsur.2014.09.030.

13. Johnston D.R., Soltesz E.G., Vakil N. et al. Long-term durability of bioprosthetic aortic valves: implications from 12,569 implants. Ann. Thorac. Surg. 2015, 99(4):1239–1247. doi:10.1016/j.athoracsur.2014.10.070.

14. Cote N., Pibarot P., Clavel M.A. Incidence, risk factors, clinical impact, and management of bioprosthesis structural valve degeneration. Curr. Opin. Cardiol. 2017, 32(2): 123-129. doi:10.1097/HCO.0000000000000372.

15. Tam H., Zhang W., Infante D. et al. Fixation of bovine pericardium-based tissue biomaterial with irreversible chemistry improves biochemical and biomechanical properties. J. Cardiovasc. Transl. Res. 2017, 10(2):194–205. doi:10.1007/s12265-017-9733-5.

16. Kudryavtseva Yu.A. Bioprosthetic heart valves. From idea to clinical use. Complex Issues of Cardiovascular Diseases 2015, 4:6–16. doi:10.17802/2306-1278-2015-4-6-16. Russian.

17. Glushkova T.V., Ovcharenko E.A., Sevostyanova V.V. et al. Calcification patterns of the components of the cardiovascular system and their substitutes: composition, stucture and localization of calcific deposits. Kardiologiia 2018, 58(5):75–85. doi:10.18087/cardio.2018.5.10110. Russian.

18. Flameng W., Rega F., Vercalsteren M. et al. Antimineralization treatment and patient-prosthesis mismatch are major determinants of the onset and incidence of structural valve degeneration in bioprosthetic heart valves. J. Thorac. Cardiovasc. Surg. 2014, 147(4):1219–1224. doi:10.1016/j.jtcvs.2013.03.025.

19. Weber C., Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat. Med. 2011; 17(11):1410–1422. doi:10.1038/nm.2538.

20. Lindman B.R., Clavel M.A., Mathieu P. et al. Calcific aortic stenosis. Nat. Rev. Dis. Primers 2016, 2:16006. doi:10.1038/nrdp.2016.6.

21. Nair V., Law K.B., Li A.Y. et al. Characterizing the inflammatory reaction in explanted Medtronic Freestyle stentless porcine aortic bioprosthesis over a 6-year period. Cardiovasc. Pathol. 2012, 21(3):158–168. doi:10.1016/j.carpath.2011.05.003.

22. Shetty R., Pibarot P., Audet A. et al. Lipid-mediated inflammation and degeneration of bioprosthetic heart valves. Eur. J. Clin. Invest. 2009, 39(6):471–480. doi:10.1111/j.1365-2362.2009.02132.x.

23. Barone A., Benktander J., Whiddon C. et al. Glycosphingolipids of porcine, bovine, and equine pericardia as potential immune targets in bioprosthetic heart valve grafts. Xenotransplantation 2018, e12406. doi:10.1111/xen.12406. Epub ahead of print.

24. Naso F., Gandaglia A., Bottio T. et al. First quantification of alpha-Gal epitope in current glutaraldehyde-fixed heart valve bioprostheses. Xenotransplantation 2013, 20(4):252–261. doi:10.1111/xen.12044.

25. Reuven E.M., Leviatan Ben-Arye S., Marshanski T. et al. Characterization of immunogenic Neu5Gc in bioprosthetic heart valves. Xenotransplantation 2016, 23(5):381–392. doi:10.1111/xen.12260.

26. Bloch O., Golde P., Dohmen P.M. et al. Immune response in patients receiving a bioprosthetic heart valve: lack of response with decellularized valves. Tissue Eng. Part A 2011, 17(19-20):2399–2405. doi:10.1089/ten.TEA.2011.0046.

27. Honge J.L., Funder J.A., Pedersen T.B. et al. Degenerative processes in bioprosthetic mitral valves in juvenile pigs. J. Cardiothorac. Surg. 2011, 6:72. doi:10.1186/1749-8090-6-72.

28. Sarbaeva N.N., Ponomareva J.V., Milyakova M.N. Macrophages: diversity of phenotypes and functions, interaction with foreign materials. Genes & Cells 2016, 11(1):9–17. Russian.

29. McLaren J.E., Michael D.R., Ashlin T.G. et al. Cytokines, macrophage lipid metabolism and foam cells: implications for cardiovascular disease therapy. Prog. Lipid Res. 2011, 50(4):331–347. doi:10.1016/j.plipres.2011.04.002.

30. Mahmut A., Mahjoub H., Boulanger M.C. et al. Lp-PLA2 is associated with structural valve degeneration of bioprostheses. Eur. J. Clin. Invest. 2014, 44(2):136–145. doi:10.1111/eci.12199.

31. Nsaibia M.J., Mahmut A., Mahjoub H. et al. Association between plasma lipoprotein levels and bioprosthetic valve structural degeneration. Heart 2016, 102(23):1915–1921. doi:10.1136/heartjnl-2016-309541.

32. Mahjoub H., Mathieu P., Senechal M. et al. ApoB/ApoA-I ratio is associated with increased risk of bioprosthetic valve degeneration. J. Am. Coll. Cardiol. 2013, 61(7):752–761. doi:10.1016/j.jacc.2012.11.033.

33. Forcillo J., Pellerin M., Perrault L.P. et al. Carpentier-Edwards pericardial valve in the aortic position: 25-years experience. Ann. Thorac. Surg. 2013, 96(2):486–493. doi:10.1016/j.athoracsur.2013.03.032.

34. Sakaue T., Nakaoka H., Shikata F. et al. Biochemical and histological evidence of deteriorated bioprosthetic valve leaflets: the accumulation of fibrinogen and plasminogen. Biol. Open 2018, 7(8). pii:bio034009. doi:10.1242/bio.034009.

35. De Marchena E., Mesa J., Pomenti S. et al. Thrombus formation following transcatheter aortic valve replacement. JACC Cardiovasc. Interv. 2015, 8(5):728–739. doi:10.1016/j.jcin.2015.03.005.

36. Makkar R.R., Fontana G., Jilaihawi H. et al. Possible subclinical leaflet thrombosis in bioprosthetic aortic valves. N. Engl. J. Med. 2015, 373(21):2015–2024. doi:10.1056/NEJMc1600179.

37. Ovcharenko E.A., Klyshnikov K.Yu., Glushkova T.V. et al. Xenopericardial graft selection for valve apparatus of transcatheter heart valve bioprosthesis. Biomedical Engineering 2016, 49(5):253–257. doi:10.1007/s10527-016-9543-0.

38. Mukhamadiyarov R.A., Rutkovskaya N.V., Sidorova O.D. et al. Cellular composition of calcified bioprostheti c heart valves. Annals of the Russian Academy of Medical Sciences 2015, 70(6):662–668. doi:10.15690/vramn560. Russian.

39. Schoen F.J. Evolving concepts of cardiac valve dynamics: the continuum of development, functional structure, pathobiology, and tissue engineering. Circulation 2008, 118(18):1864–1880. doi:10.1161/CIRCULATIONAHA.108.805911.

40. Pal S.N., Golledge J. Osteo-progenitors in vascular calcification: a circulating cell theory. J. Atheroscler. Thromb. 2011, 18(7):551–559. doi:10.5551/jat.8656.

41. Visconti R.P., Ebihara Y., LaRue A.C. et al. An in vivo analysis of hematopoietic stem cell potential: hematopoietic origin of cardiac valve interstitial cells. Circ. Res. 2006, 98(5):690–696. doi:10.1161/01.RES.0000207384.81818.d4.

42. Wang W., Li C., Pang L. et al. Mesenchymal stem cells recruited by active TGFβ contribute to osteogenicvascular calcification. Stem Cells Dev. 2014, 23(12):1392–1404. doi:10.1089/scd.2013.0528.

43. Salamon J., MunozMendoza J., Liebelt J.J. et al. Mechanical valve obstruction: review of diagnostic and treatment strategies. World J. Cardiology 2015, 7(12):875–881. doi:10.4330/wjc.v7.i12.875.

44. Steinmetz M., Skowasch D., Wernert N. et al. Differential profile of the OPG/RANKL/RANK-system in degenerative aortic native and bioprosthetic valves. J. Heart Valve Dis. 2008,17(2):187–193. PMID:18512489.


Review

For citations:


Kostyunin A.E., Ovcharenko E.A., Klyshnikov K.Yu. Modern understanding of mechanisms of bioprosthetic valve structural degeneration: a literature review. Russian Journal of Cardiology. 2018;(11):145-152. (In Russ.) https://doi.org/10.15829/1560-4071-2018-11-145-152

Views: 1006


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)