The potential role of miRNAs in calcification of cardiovascular diseases
https://doi.org/10.15829/1560-4071-2019-10-118-125
Abstract
MicroRNA is a class of endogenous noncoding 17-25 nucleotides RNAs that regulate gene expression. Recently, more and more works have been appeared confirming the important role of miRNAs in the development and progression of cardiovascular diseases. Calcification mechanisms include impaired regulation of calcium and phosphate metabolism, activation of the signaling pathways that regulate bone formation, and suppression of the signaling pathways responsible for maintaining the smooth muscle cell phenotype. The involvement of microRNAs was demonstrated for each of these mechanisms, which emphasizes the significant contribution of microRNAs to the development of calcification of blood vessels. This review summarizes the scientific data on microRNAs that are proven to be involved in the development of in vitro and in vivo calcification of their targets, as well as the latest achievements in microRNA studies in the context of vascular calcification. We also discuss the possibility of their use for early diagnostics and treatment of calcification in cardiovascular diseases.
Keywords
About the Authors
A. G. IbragimovaRussian Federation
Moscow
Competing Interests: not
K. R. Shakhmaeva
Russian Federation
Moscow
Competing Interests: not
I. E. Stanishevskaya
Russian Federation
Moscow
Competing Interests: not
A. V. Shindyapina
United States
Moscow
Competing Interests: автор заявляет об отсутствии потенциального конфликта интересов, требующего раскрытия в данной статье
References
1. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843-85.
2. Vainberg Slutskin I, Weingarten-Gabbay S, Nir R, et al. Unraveling the determinants of microRNA mediated regulation using a massively parallel reporter assay. Nature Communication. 2018;6;9(1):529. doi:10.1038/s41467-018-02980-z.
3. Suvash P, Guotian Y. MicroRNA and its role in cardiovascular disease. World Journal of Cardiovascular Diseases. 2017;7:340-57. doi:10.4236/wjcd.2017.710032.
4. Dlouha D, Hubacek JA. Regulatory RNAs and cardiovascular disease — with a special focus on circulating microRNAs. Physiol. Res. 2017;66(1):21-S38.
5. Zhao Y, Ransom JF, Li A, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell. 2007;129(2):303-17 doi:10.1016/j.cell.2007.03.030.
6. Li Y, Liang Y, Zhu Y, et al. Noncoding RNAs in Cardiac Hypertrophy. Journal of Cardiovascular Translational Research. 2018;11(6):439-49. doi:10.1007/s12265-018-9797-x.
7. Wong LL, Wang J, Liew OW, et al. MicroRNA and Heart Failure. Int J Mol Sci. 2016; 6,17(4):502. doi:10.3390/ijms17040502.
8. Liu Z, Zhou C, Liu Y, et al. The expression levels of plasma microRNAs in atrial fibrillation patients. PLoS One. 2012;7:e44906. doi:10.1371/journal.pone.0044906.
9. Miao C, Chang J, Zhang. Recent research progress of microRNAs in hypertension pathogenesis, with a focus on the roles of miRNAs in pulmonary arterial hypertension. Molecular Biology Report. 2018. doi:10.1007/s11033-018-4335-0.
10. van Rooij E, Sutherland LB, Thatcher JE, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A. 2008;105:13027-32. doi:10.1073/pnas.0805038105.
11. Kandhro AH, Shoombuatong W, Nantasenamat C, et al. The MicroRNA Interaction Network of Lipid Diseases. Front Genet. 2017;8:116. doi:10.3389/fgene.2017.00116.
12. Hoelscher SC, Doppler SA, DreBen M, et al. MicroRNAs: pleiotropic players in congenital heart disease and regeneration. J Thorac Dis. 2017;9(Suppl 1):S64-S81. doi:10.21037/jtd.2017.03.149.
13. Zhao Y, Song Y, Li Y, et al. Circulating microRNAs: Promising Biomarkers Involved in Several Cancers and Other Diseases. DNA and cell biology. 2017;36(2):77-94. doi:101089/dna.2016.3426.
14. Mackenzie NC, Staines KA, Zhu D, et al. miRNA-221 and miRNA-222 synergistically function to promote vascular calcification. Cell Biochem Funct. 2014;32:209-16. doi:10.1002/cbf.3005.
15. Al-Kafaji G, Al-Mahroos G, Abdulla Al-Muhtaresh H, et al. Circulating endothelium-enriched microRNA-126 as a potential biomarker for coronary artery disease in type 2 diabetes mellitus patients. Biomarkers. 2017;22(3-4):268-78. doi:10.1080/1354750X.2016.1204004.
16. Schober A, Nazari-Jahantigh M, Wei Y, et al. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat. Med. 2014;20(4):368-76. doi:10.1038/nm.3487.
17. Santulli G. microRNAs Distinctively Regulate Vascular Smooth Muscle and Endothelial Cells: Functional Implications in Angiogenesis, Atherosclerosis, and In-Stent Restenosis. Adv Exp Med Biol. 2015;887:53-77. doi:10.1007/978-3-319-22380-34.
18. Feinberg MW, Moore KJ. MicroRNA regulation of atherosclerosis. Circ Res. 2016;118:703-20. doi:10.1161/CIRCRESAHA.115.306300.
19. Lima J, Batty JA, Sinclair H, Kunadian V. MicroRNAs in ischemic heart disease: from pathophysiology to potential clinical applications. Cardiology in Review. 2017;25:117-25. doi:10.1097/crd.0000000000000114.
20. Condorelli G, Latronico MV, Cavarretta E. microRNAs in cardiovascular diseases: current knowledge and the road ahead. J Am Coll Cardiol. 2014;3;63(21):2177-87 doi:10.1016/j.jacc.2014.01.050.
21. Papait R, Kunderfranco P, Stirparo GG, et al. Long noncoding RNA: a new player of heart failure? J. Cardiovasc. Transl. Res. 2013;6:876-83; doi:10.1007/s12265-013-9488-6.
22. Santulli G, Iaccarino G, De. Luca N, et al. Atrial fibrillation and microRNAs. Frontier in Physiology. 2014;5:15. doi:10.3389/fphys.2014.00015.
23. Bardeesi AS, Gao J, Zhang K, et al. A novel role of cellular interactions in vascular calcification. J Transl Med. 2017;3;15(1):95. doi:10.1186/s12967-017-1190-z.
24. Kwon DH, Kim YK, Kook H. New aspects of vascular calcification: histone deacetylases and beyond. J Korean Med Sci. 2017; Nov; 32(11):1738-48. doi:10.3346/jkms.2017.32.11.1738.
25. Proudfoot D, Shanahan CM. Biology of calcification in vascular cells: intima versus media. Herz. 2001;26:245-51.
26. Speer MY, Yang HY, Brabb T, et al. Smooth muscle cells give rise to osteochondrogenic precursors and chondrocytes in calcifying arteries. Circ Res. 2009;104:733-41. doi:10.1161/CIRCRESAHA.108.183053.
27. Panizo S, Naves-DIaz M, Carrillo-Lopez N, et al. MicroRNAs 29b, 133b, and 211 Regulate Vascular Smooth Muscle Calcification Mediated by High Phosphorus. J Am Soc Nephrol. 2016 Mar;27(3):824-34. doi:10.1681/ASN.2014050520.
28. Badi I, Mancinelli L, Polizzotto A, et al. miR-34a Promotes Vascular Smooth Muscle Cell Calcification by Downregulating SIRT1(Sirtuin 1) and Axl (AXL Receptor Tyrosine Kinase). Arterioscler Thromb Vasc Biol. 2018;38(9):2079-90. doi:10.1161/ATVBAHA.118.311298.
29. Xia ZY, Hu Y, Xie PL, et al. Runx2/miR-3960/miR-2861 Positive Feedback Loop Is Responsible for Osteogenic Transdifferentiation of Vascular Smooth Muscle Cells. Biomed Res Int. 2015; doi:10.1155/2015/624037.
30. Alkagiet S, Tziomalos K. Vascular calcification: the role of microRNAs. Biomolecular Concepts. 2017;24;8(2):119-23. doi:10.1515/bmc-2017-0001.
31. Goettsch C, Rauner M, Pacyna N, et al. miR-125b regulates calcification of vascular smooth muscle cells. Am J Pathol. 2011;179:1594-600. doi:10.1016/j.ajpath.2011.06.016.
32. Qiao W, Chen L, Zhang M. MicroRNA-205 regulates the calcification and osteoblastic differentiation of vascular smooth muscle cells. Cell Physiol Biochem. 2014; 33(6):1945-53. doi:10.1159/000362971.
33. Balderman JA, Lee HY, Mahoney CE, et al. Bone morphogenetic protein-2 decreases microRNA-30b and microRNA-30c to promote vascular smooth muscle cell calcification. J Am Heart Assoc. 2012;1(6):e003905. doi:10.1161/JAHA.112.003905.
34. Rangrez AY, M'Baya-Moutoula E, Metzinger-Le Meuth V, et al. Inorganic phosphate accelerates the migration of vascular smooth muscle cells: evidence for the involvement of miR-223. PLoS One. 2012;7:e47807. doi:10.1371/journal.pone.0047807.
35. Taibi F, Metzinger-Le Meuth V, et al. miR-223:An inflammatory oncomiR enters the cardiovascular field. Biochim Biophys Acta 2014;1842:1001-9. doi:10.1016/j.bbadis.2014.03.005.
36. Massy ZA, Metzinger-Le Meuth V, Metzinger L. MicroRNAs are associated with uremic toxicity, cardiovascular calcification, and disease. Contrib Nephrol. 2017;189:160-8. doi:10.1159/000450774.
37. Liu JH, Xiao X, Shen Y, et al. MicroRNA-32 promotes calcification in vascular smooth muscle cells: Implications as a novel marker for coronary artery calcification. PLOS One. 2017;12:19. doi:10.1371/journal.pone.0174138.
38. Nakano-Kurimoto R, Ikeda K, Uraoka M, et al. Replicative senescence of vascular smooth muscle cells enhances the calcification through initiating the osteoblastic transition. Am J Physiol Heart Circ Physiol. 2009;297:H1673-84. doi:10.1152/ajpheart.00455.2009.
39. Liao XB, Zhang ZY, Yuan K, et al. MiR-133a modulates osteogenic differentiation of vascular smooth muscle cells. Endocrinology. 2013;154:3344-52. doi:101210/en.2012-2236.
40. Leopold JA. MicroRNAs regulate vascular medial calcification. Cells. 2014;3:963-80. doi:10.3390/cells3040963.
41. Wu T, Zhou H, Hong Y, et al. miR-30 family members negatively regulate osteoblast differentiation. J Biol Chem. 2012;287:7503-11. doi:10.1074/jbc.M111.292722.
42. Kochetov AG, Zhirov IV, Masenko VP, et al. Prospects of use of microRNAs in the diagnostics and treatment of heart failure. Kardiovest. 2014;2:62-7. (In Russ.)
43. Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18:997-1006. doi:10.1038/cr.2008.282.
44. Goettsch C, Hutcheson JD, Aikawa E. MicroRNA in cardiovascular calcification: focus on targets and extracellular vesicle delivery mechanisms. Circulation Research. 2013;112:1073-84. doi:10.1161/CIRCRESAHA.113.300937.
45. Boon A. and Dimmeler S. MicroRNAs in Myocardial Infarction. Nature Reviews Cardiology. 2015;12:135-42. doi:10.1038/nrcardio.2014.207.
46. Qiu XK, Ma J. Alteration in microRNA-155 level correspond to severity of coronary heart disease. Scand J Clin Lab Invest. 2018 May;78(3):219-23. doi:10.1080/00365513.2018.1435904.
47. 47 Howlett P, Cleal JK, Wu H,et al. MicroRNA 8059 asa marker forthe presence andextentof coronary artery calcification. Open Heart. 2018;5(1):e000678. doi:10.1136/openhrt-2017-000678.
48. Liu W, Ling S, Sun W, et al. Circulating microRNAs correlated with the level of coronary artery calcification in symptomatic patients. Scientific Reports. 2015;5:16099; doi:10.1038/srep16099.
Review
For citations:
Ibragimova A.G., Shakhmaeva K.R., Stanishevskaya I.E., Shindyapina A.V. The potential role of miRNAs in calcification of cardiovascular diseases. Russian Journal of Cardiology. 2019;(10):118-125. (In Russ.) https://doi.org/10.15829/1560-4071-2019-10-118-125