ANALYSIS OF DIFFERENTIAL ExPRESSION OF MATRIx METALLOPROTEASES IN STABLE AND UNSTABLE ATHEROSCLEROTIC LESIONS BY A METHOD OF FULL GENOME SEQUENCING OF RNA: PILOT STUDY
https://doi.org/10.15829/1560-4071-2018-8-52-58
Abstract
Aim. To analyze differential expression of metalloproteases genes, involved into the processes of stabilization/destabilization of atherosclerotic plaque, with the method of full genome sequencing of RNA, and to evaluate the level of metalloproteases in homogenates of plaques of various types by immune enzyme assay method (IEA).
Material and methods. The study has been conducted on the specimens of atherosclerotic plaques of patients aged 45-65 y.o., inhabitants of Western Siberia with angiographically proven coronary atherosclerosis and no acute coronary syndrome, with stable angina II-IV functional class. Specimens collection from the plaques was done during an operation if there were intraoperational indications. Histology performed. In intima/media homogenates by IEA method, with BCM Diagnostics assays the levels of destructive markers were measured: MMP-1, MMP3, MMP-7, MMP-9, TIMP-1 on the Multiscan EX (Thermo Fisher Scientific, USA). Libraries preparation for full genomic sequencing of RNA was done with Illumina’s TruSeq RNA Sample Preparation Kit (Illumina, USA). Expression profile in tissues was done on HiSeq 1500 (Illumina, USA).
Results. There are differences in expression of the genes MMP2, MMP7, MMP8, MMP9, MMP12, и MMP14 in different types of plaques. There was 8 times higher significant raise in increase of the expression level of ММР9 (p<0,001) in unstable plaque of dystrophic-necrotic type. Study by IEA of MMP-7 content, which is an activator of pro-MMP-9, as well as the content of MMP-9 itself, showed their increased levels in unstable plaques comparing to fatty streaks (1,5 and 2,4 times) and young stable plaques (1,4 and 2,1 times).
Conclusion. For the gene ММР9 there were significant differences obtained, of expression levels in stable atherosclerotic fibrous plaque and unstable plaque of dystrophic-necrotic type. With the IEA it was found that fatty streaks and young stable atheromas of coronary arteries have an increased concentration of MMP-3 and decreased activity of tissue inhibitor of metalloproteases. In unstable plaques with the tendency to rupture/ulceration there are increased levels of MMP-1, MMP-7, MMP-9.
About the Authors
D. Е. IvanoschukRussian Federation
Novosibirsk
Competing Interests: Конфликт интересов отсутствует
Yu. I. Ragino
Russian Federation
Novosibirsk
Competing Interests: Конфликт интересов отсутствует
E. V. Shakhtshneider
Russian Federation
Novosibirsk
Competing Interests: Конфликт интересов отсутствует
S. V. Mikhailova
Russian Federation
Novosibirsk
Competing Interests: Конфликт интересов отсутствует
V. S. Fishman
Russian Federation
Novosibirsk
Competing Interests: Конфликт интересов отсутствует
Ya. V. Polonskaya
Russian Federation
Novosibirsk
Competing Interests: Конфликт интересов отсутствует
E. V. Kashtanova
Russian Federation
Novosibirsk
Competing Interests: Конфликт интересов отсутствует
A. M. Chernyavsky
Russian Federation
Novosibirsk
Competing Interests: Конфликт интересов отсутствует
I. S. Murashov
Russian Federation
Novosibirsk
Competing Interests: Конфликт интересов отсутствует
М. I. Voevoda
Russian Federation
Novosibirsk
Competing Interests: Конфликт интересов отсутствует
References
1. Roth GA, Johnson C, Abajobir A, Abd-Allah F, et al. Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. J Am Coll Cardiol. 2017 Jul 4;70(1):1-25. doi:10.1016/j.jacc.2017.04.052.
2. Johnson JL. Metalloproteinases in atherosclerosis. European Journal of Pharmacology. 2017;816:93-106. doi:10.1016/j.ejphar.2017.09.007.
3. Bourboulia D, Stetler-Stevenson WG. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): Positive and negative regulators in tumor cell adhesion. Seminars in Cancer Biology. 2010;3:161-8. doi:10.1016/j. semcancer.2010.05.002.
4. Löffek S, Schilling O, Franzke C-W. Biological role of matrix metalloproteinases: a critical balance. European Respiratory Journal. 2011;38:191-208. doi:10.1183/09031936.00146510.
5. Brew K, Nagase H. The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochimica et Biophysica Acta. 2010;1803(1):5571. doi:10.1016/j.bbamcr.2010.01.003.
6. Newby AC. Metalloproteinase production from macrophages — a perfect storm leading to atherosclerotic plaque rupture and myocardial infarction. Experimental physiology. 2016;1:1327-37. doi:10.1113/EP085567.
7. de Nooijer R, Verkleij CJ, von der Thuesen JH, et al. Lesional overexpression of matrix metalloproteinase-9 promotes intraplaque hemorrhage in advanced lesions, but not at earlier stages of atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology. 2006;26:340-6. doi:10.1161/01.ATV.0000197795.56960.64.
8. Abbas A, Aukrust P, Russell D, et.al. Matrix metalloproteinase 7 is associated with symptomatic lesions and adverse events in patients with carotid atherosclerosis. PLoS One. 2014;9(1):e84935. doi:10.1371/journal.pone.0084935.
9. Lenglet S, Mach F, Montecucco F. Role of matrix metalloproteinase-8 in atherosclerosis. Mediators of Inflammation. 2013;2013:659282. doi:10.1155/2013/659282.
10. Quillard T, Tesmenitsky Y, Croce K, et al. Selective inhibition of matrix metalloproteinase-13 increases collagen content of established mouse atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology. 2011;31(11):2464-72. doi:10.1161/ ATVBAHA.111.231563.
11. Johnson JL, Jenkins NP, Huang WC, et al. Relationship of MMP-14 and TIMP-3 expression with macrophage activation and human atherosclerotic plaque vulnerability. Mediators Inflamm. 2014;2014:276457. doi:10.1155/2014/276457.
12. Mahdessian H, Perisic Matic L, Lengquist M, et al. Integrative studies implicate matrix metalloproteinase-12 as a culprit gene for large-artery atherosclerotic stroke. Journal of Internal Medicine. 2017;282(5):429-44. doi:10.1111/joim.12655.
13. Ragino YuI, Volkov AM, Chernyavskyi AM. Stages of atherosclerotic plaque development and unstable plaque types: pathophysiologic and histologic characteristics. Russ J Cardiol. 2013;18(5):88–95. (In Russ). doi:10.15829/1560-4071-2013-5.
14. Lin J, Kakkar V, Lu X. Impact of matrix metalloproteinases on atherosclerosis. Curr Drug Targets. 2014 Apr;15(4):442-53. doi:10.2174/1389450115666140211115805.
15. Ragino YuI, Chernyavsky AM, Volkov AM, Voevoda MI. Factors and mechanisms of instability of atherosclerotic plaque. Novosibirsk: Science. 2008, 41-49 p. (In Russ).
Review
For citations:
Ivanoschuk D.Е., Ragino Yu.I., Shakhtshneider E.V., Mikhailova S.V., Fishman V.S., Polonskaya Ya.V., Kashtanova E.V., Chernyavsky A.M., Murashov I.S., Voevoda М.I. ANALYSIS OF DIFFERENTIAL ExPRESSION OF MATRIx METALLOPROTEASES IN STABLE AND UNSTABLE ATHEROSCLEROTIC LESIONS BY A METHOD OF FULL GENOME SEQUENCING OF RNA: PILOT STUDY. Russian Journal of Cardiology. 2018;(8):52-58. (In Russ.) https://doi.org/10.15829/1560-4071-2018-8-52-58