Preview

Russian Journal of Cardiology

Advanced search

THE ROLE OF TRANSFORMING GROWTH FACTOR BETA-1 AND GALECTIN-3 IN FORMATION OF THE LEFT ATRIUM FIBROSIS IN PATIENTS WITH PAROXYSMAL ATRIAL FIBRILLATION AND METABOLIC SYNDROME

https://doi.org/10.15829/1560-4071-2018-2-60-66

Abstract

Aim. To evaluate the prominence of fibrosis of the left atrium myocardium and to define the value of transforming growth factor beta 1 (TGF-beta1) and galectin-3 in development of myocardial fibrosis in atrial fibrillation (AF) patients with metabolic syndrome (MS).

Material and methods. Totally, 58 patients with AF included, of those 27 with MS. Controls were 50 almost healthy participants. Levels of galectin-3 and TGF-beta1 in blood serum were measured by immune enzyme assay. For fibrosis assessment, the anatomical and amplitude charts of the left atrium (LA) were built up with nonfluoroscopic system of electroanatomical charting CARTO3 (Biosense Webster, USA) and catheter measurement of the contact power with myocardium of LA  (Smart Touch Thermocool, Biosense Webster, USA). In “off-line” regimen the evaluation performed of the zones of low voltage in amplitude specters 0,2-0,5 mV and 0,2-1,0 mV with the area measurement by navigation software function “area measurement”.

Results. Volume of LA and volume index of LA in AF with MS were higher than in AF with no MS: 78,0±20,4 mL and 60,4±19,8 mL (p=0,005) and 37,8±9,5 mL/m2 and 30,4±9,0 mL/m2 (p=0,005), respectively. The percent of LA fibrosis area in AF with MS was higher than in AF with no MS (16,1 [12,8;20,5]% and 10,5 [7,3;16,2]%, respectively, p=0,028). The positive correlations revealed of the level of galectin-3 (r=0,410, р<0,001) and TGF-beta1 (r=0,594, р<0,001) in blood serum with the percentage of LA fibrosis in AF patients. By the linear regression, the influence found of galectin-3 levels (β=0,549, p<0,001) and of TGF-beta1 (β=0,297, p=0,025) on the area of LA fibrosis in AF patients.

Conclusion. The area of fibrosis in the LA myocardium in AF patients with MS is larger than in AF no MS patients. Myocardial fibrosis markers evaluation (galectin-3, TGF-beta1) in blood serum may have diagnostic significance in prediction of AF fibrosis severity in AF patients.

About the Authors

E. L. Zaslavskaya
Pavlov First Saint-Petersburg State Medical University of the Ministry of Health
Russian Federation

Competing Interests:

Конфликт интересов не заявляется. Дизайн исследования, сбор, анализ и интерпретация данных, написание отчёта и принятие решения о представлении отчёта к публикации проводились без участия спонсоров.



A. N. Morozov
Pavlov First Saint-Petersburg State Medical University of the Ministry of Health
Russian Federation


V. A. Ionin
Pavlov First Saint-Petersburg State Medical University of the Ministry of Health; Federal Almazov North-West Medical Research Centre of the Ministry of Health
Russian Federation


I. Ma
Pavlov First Saint-Petersburg State Medical University of the Ministry of Health
Russian Federation


S. Е. Nifontov
Pavlov First Saint-Petersburg State Medical University of the Ministry of Health
Russian Federation


Е. I. Baranova
Pavlov First Saint-Petersburg State Medical University of the Ministry of Health; Federal Almazov North-West Medical Research Centre of the Ministry of Health
Russian Federation


S. M. Yashin
Pavlov First Saint-Petersburg State Medical University of the Ministry of Health
Russian Federation


E. V. Shlyakhto
Pavlov First Saint-Petersburg State Medical University of the Ministry of Health; Federal Almazov North-West Medical Research Centre of the Ministry of Health
Russian Federation


References

1. Kirchhof P, Benussi S, Kotecha D, et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. European Heart Journal, 2016; 37 (7): 2893-29. DOI: 10.1093/eurheartj/ehw210.

2. Dzeshka MS, Lip GY, Snezhitskiy V, et al. Cardiac fibrosis in patients with atrial fibrillation. JACC. 2015; 66 (8): 943-59. DOI: 10.1016/j.jacc.2015.06.1313.

3. Chamberlain AM, Agarwal SK, Ambrose M, et al. Metabolic syndrome and incidence of atrial fibrillation among blacks and whites in the Atherosclerosis Risk in Communities Study Am.Heart J. 2010; 159: 159-64. DOI: 10.1016/j.ahj.2010.02.005.

4. Rotar OP, Libis RA, Isaeva EN, et al. Metabolic syndrome prevalence in russian cities. Russian Journal of Cardiology. 2012; 2: 55-62. (In Russ.) Ротарь ОП, Либис РА, Исаева ЕН и др. Распространенность метаболического синдрома в разных городах РФ. Российский кардиологический журнал 2012; 2: 55-62. DOI: 10.15829/1560-40712017-8-82-89.

5. Corradi D. Atrial fibrillation from the pathologist’s perspective. Cardiovascular Pathology. 2014; 23 (2): 71-84. DOI: 10.1016/j.carpath.2013.12.001.

6. Akoum N, Morris A, Perry D, et al. Substrate modification is a better predictor of catheter ablation success in atrial fibrillation than pulmonary vein isolation: an LGE-MRI Study. Clin. Med. Insights Cardiol. 2015; 9: 25-31. DOI: 10.4137/CMC.S22100.

7. Mahajan R, Lau DH, Brooks AG, et al. Electrophysiological, electroanatomical, and structural remodeling of the atria as consequences of sustained obesity. J Am Coll Cardiol. 2015; 66 (1): 1-11. DOI: 10.1016/j.jacc.2015.04.058.

8. Zhao S, Li M, Ju W, et al. Serum level of transforming growth factor beta 1 is associated with left atrial voltage in patients with chronic atrial fibrillation. Indian Pacing and Electrophysiology Journal, 2017, 1-5. DOI: 10.1016/j.ipej.2017.11.001.

9. Hernández-Romero D, Vílchez JA, Lahoz Á, et al. Galectin-3 as a marker of interstitial atrial remodelling involved in atrial fibrillation. Sci Rep. 2017; 7: 40378. DOI: 10.1038/srep40378.

10. Oakes RS, Badger TJ. Detection and quantification of left atrial structural remodeling with delayed-enhancement magnetic resonance imaging in patients with atrial fibrillation. Circulation. 2009; 119: 1758-67. DOI: 10.1161/CIRCULATIONAHA.108.811877.

11. Keramati A, Chrispin J, Huang D. Multimodal examination of atrial fibrillation substrate: correlation of left atrial bipolar voltage using multi-electrode fast automated mapping, point-by-point mapping, and magnetic resonance image intensity ratio. JACC: CLINICAL ELECTROPHYSIOLOGY. 2018; 4 (1): 69-71. DOI: 10.1016/j.jacep.2017.10.010.

12. Kirchhof P, Calkins H. Catheter ablation in patients with persistent atrial fibrillation. European Heart Journal. 2017; 38 (1): 20-6. DOI: 10.1093/eurheartj/ehw260.

13. Orshanskaya VS, Kamenev AV, Belyakova LA, et al. Left atrial electroanatomic substrate as a predictor of atrial fibrillation recurrence after circular radiofrequency pulmonary veins isolation. Observational prospective study results Russian Journal of Cardiology. 2017; 8: 82-9. (In Russ.) Оршанская ВС, Каменев АВ, Белякова ЛА, и др. Электроанатомический субстракт левого предсердия и его прогностическая ценность при определении риска рецидива фибрилляции предсердий после циркулярной изоляции легочных вен. Результаты проспективного исследования. Российский кардиологический журнал. 2017; 8: 82-9. DOI: 10.15829/1560-40712017-8-82-89.

14. Rietdorf K, MacQueen H. Investigating interactions between epicardial adipose tissue and cardiac myocytes: what can we learn from different approaches? British J Pharmacol. 2017; 174 (20): 3542-60. DOI: 10.1111/bph.13678.

15. Iacobellis G, Willens HJ. Echocardiographic epicardial fat: a review of research and clinical applications. J Am Soc Echocardiol 2009; 22 (12): 1311-9. DOI: 10.1016/j.echo.2009.10.013.

16. Salazar J, Luzardo E, Mejías JC, et al. Epicardial fat: physiological, pathological, and therapeutic implications. Cardiology Research and Practice 2016; 1: 1291537. DOI: 10.1155/2016/1291537.

17. Zaslavskaya EL, Ionin VA, Listopad OV, et al. Efficiency of radiofrequency ablation of pulmonary vein ostium for patients with atrial fibrillation and metabolics. The Scientific Notes of the I. P. Pavlov St. Petersburg State Medical University. 2016; 23 (2): 39-42. (In Russ.) Заславская ЕЛ, Ионин ВА, Листопад ОВ, и др. Эффективность радиочастотной аблации устьев легочных вен у пациентов с фибрилляцией предсердий и метаболическим синдромом. Ученые записки Санкт-Петербургского государственного медицинского университета имени академика И. П. Павлова. 2016; 23 (2): 39-42. DOI: 10.24884/1607-4181-2016-23-2.

18. Lau D H, Schotten U, Mahajan R, et al. Novel mechanisms in the pathogenesis of atrial fibrillation: practical applications. European heart journal. 2015; 37 (20): 1573-81. DOI: 10.1093/eurheartj/ehv375.

19. Verheule S, Sato T, Everett T, et al. Increased vulnerability to atrial fibrillation in transgenic mice with selective atrial fibrosis caused by overexpression of TGF-β1. Circulation research. 2004; 94 (11): 1458-65. DOI: 10.1161/01.RES.0000129579.59664.9d.

20. Ionin VA, Listopad OV, Nifontov SE, et al. Galectin 3 in patients with metabolic syndrome and atrial fibrillation. “Arterial’naya Gipertenziya” (“Arterial Hypertension”). 2014; 20 (5): 462-9. (In Russ.) Ионин ВА, Листопад ОВ, Нифонтов СЕ, и др. Галектин 3 у пациентов с метаболическим синдромом и фибрилляцией предсердий. Артериальная гипертензия. 2014; 20 (5): 462-9. DOI: 10.18705/1607-419X-2014-20-5-462-469.

21. Ho JE, Yin X, Levy D, et al. Galectin 3 and incident atrial fibrillation in the community. Am. Heart J. 2014; 167 (5): 729-34. DOI: 10.1016/j.ahj.2014.02.009.

22. Yalcin MU, Gurses KM, Kocyigit D, et al. The association of serum galectin-3 levels with atrial electrical and structural remodeling. Cardiovasc. Electrophysiol. 2015; 26 (6): 63540. DOI: 10.1111/jce.1263.


Review

For citations:


Zaslavskaya E.L., Morozov A.N., Ionin V.A., Ma I., Nifontov S.Е., Baranova Е.I., Yashin S.M., Shlyakhto E.V. THE ROLE OF TRANSFORMING GROWTH FACTOR BETA-1 AND GALECTIN-3 IN FORMATION OF THE LEFT ATRIUM FIBROSIS IN PATIENTS WITH PAROXYSMAL ATRIAL FIBRILLATION AND METABOLIC SYNDROME. Russian Journal of Cardiology. 2018;(2):60-66. (In Russ.) https://doi.org/10.15829/1560-4071-2018-2-60-66

Views: 1279


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)