THREE-DIMENSIONAL MODEL OF LEFT CHAMBERS OF THE HEART BASED ON ECHOCARDIOGRAPHY DATA: AN INSTRUMENT FOR DEVELOPMENT OF TRANSCATHETER VALVES
https://doi.org/10.15829/1560-4071-2017-8-75-81
Abstract
Aim. Comparative analysis of the acquired with EchoCG method parameters of the left chambers of the heart and of mitral valve in normal state and in restrictive type of failure with further building up three-dimensional models of these variants of the fibrous anulus geometry, and of the left atrium, left ventricle and its outgoing tract.
Material and methods. The study was done using 3D transthoracal and transesophageal EchoCG on Philips iE33 (Philips Healthcare, USA) in 30 patients with unchanged mitral valve (n=15) and in ischemic mitral regurgitation (n=15). Spatial configuration of the anulus fibrosus was investigated, and mitral valve, spatial and volumetric parameters of the left atrium and left ventricle. Data was processed in SciLab 4.1.2 software and exported to CATIA 5 modelling system, where the acquired curves were combined to 2 solid thin-wall models, and after linking of the surfaces — to a hard-bodied model with required thickness of the walls.
Results. All studied parameters revealed significant differences (p<0,001) in groups comparison. In restrictive type of insufficiency, sizes of fibrous anulus increase: intercomissural diameter by 22%, front-back — by 13%, perimeter — by 28%, surface — by 79%. End systolic and diastolic volumes of the LV increase more than 2 times, which is related with more prominent sphericity of the LV, than normally. Increase of LA more than 1,5 times also combines with its geometry change towards sphere. Three dimensional computer model of the left heart chambers changed as a result of ischemic mitral failure, is created. The model can be implemented in creation, analysis and prediction of medical devices for the position and/or realized as the full-sized mockups, test systems and phantoms for development and education.
Conclusion. The investigation of mitral valve characteristics and of the left heart chambers by method of 3D transthoracal and transesophageal echocardiography makes it to obtain the baseline data necessary for creation of 3D computed models of the anatomic area normal and disordered. Such models can be implemented in the development of implanted devices constructions, preliminary tests of medical devices and in training.
About the Authors
I. Yu. ZhuravlevaR. M. Sharifulin
Russian Federation
Competing Interests: конфликт интересов не заявляется
A. V. Bogachev-Prokofiev
D. V. Nushtaev
O. Yu. Malakhova
D. P. Demidov
A. M. Karaskov
References
1. Cribier A, Durand E, Eltchaninoff H. Patient selection for TAVI in 2014: is it justified to treat low-or intermediate-risk patients? The cardiologist’s view. EuroIntervention 2014; 10(Suppl U):U16-21. doi: 10.4244/EIJV10SUA3.
2. Kappetein AP, Osnabrugge RL, Head SJ. Patient selection for TAVI in 2014: is there a justification for treating low- or intermediate-risk patients? The surgeon’s view. EuroIntervention 2014; 10(Suppl U):U11-5. doi: 10.4244/EIJV10SUA2.
3. Maisano F, Buzzatti N, Taramasso M, et al. Mitral transcatheter technologies. Rambam Maimonides Med J. 2013; 4 (3): e0015. doi:10.5041/RMMJ.10115.
4. Zamorano JL, González-Gómez A, Lancellotti P. Mitral valve anatomy: implications for transcatheter mitral valve interventions. EuroIntervention 2014; 10(Suppl U):U106-11. doi: 10.4244/EIJV10SUA15.
5. Gonzalez-Gomez A, Fernandez-Santos S, Fernandez-Golfin C, et al. Mitral valve anatomy: pre-procedural screening and imaging techniques. EuroIntervention 2015; 11:32-6. doi: 10.4244/EIJV11SWA8.
6. Ramlawi B, Gammie JS. Mitral valve surgery: current minimally invasive and transcatheter options. Methodist Debakey Cardiovasc J. 2016; 12(1):20-26. doi: 10.14797/mdcj-12-1-20.
7. Debonnaire P, Palmen M, Marsan NA, et al. Contemporary imaging of normal mitral valve anatomy and function. Curr Opin Cardiol 2012; 27:455-64.
8. doi: 10.1097/HCO.0b013e328354d7b5.
9. Garbi M, Monaghan MJ. Quantitative mitral valve anatomy and pathology. Echo Research and Practice 2015; 2(3):63-72. doi: 10.1530/ERP-15-0008.
10. Biaggi P, Jedrzkiewicz S, Gruner C, et al. Quantification of mitral valve anatomy by three-dimensional transesophageal echocardiography in mitral valve prolapse predicts surgical anatomy and the complexity of mitral valve repair. J Am Soc Echocardiogr 2012; 25:758-65.
11. doi: 10.1016/j.echo.2012.03.010.
12. Foster GP, Isselbacher EM, Rose GA, et al. Accurate localization of mitral regurgitant defects using multiplane transesophageal echocardiography. Ann Thorac Surg 1998; 65:1025-31. doi: http://dx.doi.org/10.1016/S0003-4975(98)00084-8.
13. Omran AS, Arifi AA, Mohamed AA. Echocardiography of the mitral valve. Journal of the Saudi Heart Association 2010; 22(3):165-70. doi: 10.1016/j.jsha.2010.04.001.
14. Ovcharenko E, Klyshnikov K, Yuzhalin A, et al. Modeling of transcatheter aortic valve replacement: patient specific vs general approaches based on finite element analysis. Computers in Biology and Medicine 2016; 69:29-36. doi: 10.1016/j.compbiomed.2015.12.001.
15. Ovcharenko EA, Klyshnikov KU, Savrasov GV, et al. Predicting the outcomes of transcatheter aortic valve prosthesis implantation based on the finite element analysis and microcomputer tomography data. Sovremennye tehnologii v medicine 2016; 8(1):82–92. Russian (Овчаренко Е.А., Клышников К.Ю., Саврасов Г.В. и др. Прогнозирование результатов имплантации транскатетерного протеза клапана аорты на основе метода конечных элементов и данных микрокомпьютерной томографии. Современные технологии в медицине 2016; 8(1):82-92). doi: http://dx.doi.org/10.17691/stm2016.8.1.11.
16. Jassar AS, Brinster CJ, Vergnat M, et al. Quantitative mitral valve modeling using real-time three-dimensional echocardiography: technique and repeatability. Ann Thorac Surg 2011; 91(1):165-71. doi: 10.1016/j.athoracsur.2010.10.034.
17. Pouch AM, Jackson BM, Lai E, et al. Modeling the myxomatous mitral valve with three-dimensional echocardiography. Ann Thorac Surg 2016; 102(3):703-10. doi: 10.1016/j.athoracsur.2016.05.087.
18. Toma M, Bloodworth CH 4th, Einstein DR, et al. High-resolution subject-specific mitral valve imaging and modeling: experimental and computational methods. Biomech Model Mechanobiol 2016; 15(6):1619-30. doi: 10.1007/s10237-016-0786-1.
19. Dolgov VY, Ovcharenko EA, Klyshnikov KY, et al. Automated method to analyze geometry and topology of mitral valve fibrous ring. Sovremennye tehnologii v medicine 2016; 8(2): 22–30. Russian (Долгов В.Ю., Овчаренко Е.А., Клышников К.Ю. и др. Автоматизированный метод анализа геометрии и топологии фиброзного кольца митрального клапана. Современные технологии в медицине 2016; 8(2):22-30).
20. doi: 10.17692/stm2016.8.2.03.
21. Ovcharenko EA, Klyshnikov KU, Vlad AR, et al. Computer-aided design of the human aortic root. Comput Biol Med 2014; 54:109–15.
22. doi: 10.1016/j.compbiomed.2014.08.023.
23. Cherniavsky AM, Razumakhin RA, Efendiev VU, et al. Remote results of surgical treatment of moderate ischemic mitral regurgitation in patients with normal left ventricle function. Circulation Pathology and Cardiac Surgery 2015; 19(2):63-71. Russian (Чернявский А.М., Разумахин Р.А., Эфендиев В.У. и др. Отдаленные результаты хирургического лечения умеренной ишемической митральной недостаточности у пациентов с сохраненной фракцией выброса левого желудочка. Патология кровообращения и кардиохирургия 2015; 19(2):63-71). http://journalmeshalkin.ru/index.php/heartjournal/article/view/225/225.
24. Irvine T, Li X, Sahn D, et al. Assessment of mitral regurgitation. Heart 2002; 88(4):11-9. doi: 10.1136/heart.88.suppl_4.iv11.
25. Thériault-Lauzier P, Mylotte D, Dorfmeister M, et al. Quantitative multi-slice computed tomography assessment of the mitral valvular complex for transcatheter mitral valve interventions part 1: systematic measurement methodology and inter-observer variability. EuroIntervention 2016; 12(8):1011-20. doi: 10.4244/EIJY15M11_09.
26. Maffessanti F, Gripari P, Pontone G, et al. Three-dimensional dynamic assessment of tricuspid and mitral annuli using cardiovascular magnetic resonance. Eur Heart J Cardiovasc Imaging 2013; 14(10):986-95. doi: 10.1093/ehjci/jet004.
27. Veronesi F, Corsi C, Sugeng L, et al. A study of functional anatomy of aorticmitral valve coupling using 3D matrix transesophageal echocardiography. Circ Cardiovasc Imaging 2009; 2 (1):24–31. doi: 10.1161/CIRCIMAGING.108.785907.
28. Alkadhi H, Desbiolles L, Stolzmann P, et al. Mitral annular shape, size, and motion in normals and in patients with cardiomyopathy: evaluation with computed tomography. Invest Radiol 2009; 44:218–25. doi: 10.1097/RLI.0b013e3181994a73.
29. Ormiston JA, Shah PM, Tei C, et al. Size and motion of the mitral valve annulus in man. I. A two-dimensional echocardiographic method and findings in normal subjects. Circulation 1981; 64:113–20. doi: https://doi.org/10.1161/01.CIR.64.1.113.
30. Flachskampf FA, Chandra S, Gaddipatti A, et al. Analysis of shape and motion of the mitral annulus in subjects with and without cardiomyopathy by echocardiographic 3-dimensional reconstruction. J Am Soc Echocardiogr 2000; 13(4):277-87. doi: http://dx.doi.org/10.1067/mje.2000.103878.
31. Rusted IE, Scheifley CH, Edwards JE. Studies of the mitral valve. I. Anatomic features of the normal mitral valve and associated structures. Circulation 1952; 6:825–31. doi: https://doi.org/10.1161/01.CIR.6.6.825.
32. Baltabaeva A, Marciniak M, Bijnens B, et al. Regional left ventricular deformation and geometry analysis provides insights in myocardial remodeling in mild to moderate hypertension. Eur J Echocardiogr 2008; 9(4):501-8. doi: 10.1016/j.euje.2007.08.004.
Supplementary files
![]() |
1. титульный лист | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(20KB)
|
Indexing metadata ▾ |
![]() |
2. Сопроводительное письмо | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(592KB)
|
Indexing metadata ▾ |
![]() |
3. рис1 | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(1MB)
|
Indexing metadata ▾ |
![]() |
4. рис2 | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(540KB)
|
Indexing metadata ▾ |
![]() |
5. рис3 | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(375KB)
|
Indexing metadata ▾ |
![]() |
6. рис4 | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(2MB)
|
Indexing metadata ▾ |
![]() |
7. рис5 | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(961KB)
|
Indexing metadata ▾ |
Review
For citations:
Zhuravleva I.Yu., Sharifulin R.M., Bogachev-Prokofiev A.V., Nushtaev D.V., Malakhova O.Yu., Demidov D.P., Karaskov A.M. THREE-DIMENSIONAL MODEL OF LEFT CHAMBERS OF THE HEART BASED ON ECHOCARDIOGRAPHY DATA: AN INSTRUMENT FOR DEVELOPMENT OF TRANSCATHETER VALVES. Russian Journal of Cardiology. 2017;(8):75-81. (In Russ.) https://doi.org/10.15829/1560-4071-2017-8-75-81