THE ROLE OF GROWTH DIFFERENTIATION FACTOR 11 (GDF11) IN REGULATION OF LIPID METAbOLISM AND CARDIOHEMODYNAMIC FUNCTIONS IN ESSENTIAL HYPERTENSION PATIENTS IN MODERATE EFFORT ExERCISES
https://doi.org/10.15829/1560-4071-2018-4-93-98
Abstract
Aim. To reveal the role of a “youth protein” GDF11 in regulation of lipid metabolism and cardiovascular system work in essential hypertension (EH) in women taking antihypertension medications and regularly involved in moderate physical exercises (kinesitherapy).
Material and methods. In all participants, the level of GDF11 was measured by immune enzyme assay, and levels of lipids; registration was done of blood pressure, echocardiography and circulation condition with a novel sensor of dynamic light scattering (mDLS).
Results. In women with AH taking antihypertension medications, the level of GDF11 was lower more than 3 times. In EH patients the deviations found, in a shear flow velocity with significant increase of rapid velocity processes. Correlations found for GDF11 level with the age, blood pressure, condition of the heart work, hemodynamical and oscillatory indexes. In the EH group patients regularly doing exercises (kinesitherapy), the level of GDF11, blood pressure, lipid profile and all parameters of heart work and hemodynamics are close to normal.
Conclusion. The “youth protein” CDF11 is a factor of prevention of AH. Kinesitherapy in EH patients normalizes GDF11, lipid profile, and significantly increases the work of cardiovascular system.
About the Authors
E. S. GusevaRussian Federation
Chita.
S. O. Davydov
Russian Federation
Chita.
B. I. Kuznik
Russian Federation
Chita.
Yu. N. Smolyakov
Chita.
A. V. Stepanov
Russian Federation
Chita.
I. V. Fine
Israel
Rehovot.
E. Magen
Israel
Ashkelon.
References
1. Loffredo FS, Steinhauser ML, Jay SM, et al. Growth Differentiation Factor 11 Is a Circulating Factor that Reverses Age-Related Cardiac Hypertrophy. Cell 2013; 153 (4): 828-39. DOI: 10.1016/j.cell.2013.04.015
2. Villeda SA, Luo J, Mosher KI, et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 2011; 477(7362): 90-4. DOI: 10.1038/nature10357.
3. Villeda SA, Plambeck KE, Middeldorp J. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nature Medicine 2014; 20 (6): 659-63. DOI: 10.1038/nm.3569.
4. Poggioli T, Vujic A, Yang P. Circulating Growth Differentiation Factor 11/8 levels decline with age. Circ Res 2016; 118 (1): 29-37. DOI: 10.1161/CIRCRESAHA.115.307521
5. Khavinson VK, Kuznik BI, Tarnovskaya SI, et al. GDF11 Protein as a geroprotector. Biology Bulletin Reviews 2016; 6 (2): 141-8.
6. Egerman MA, Cadena SM, Gilbert JA, et al. GDF11 Increases with age and inhibits skeletal muscle regeneration. Cell Metabolism 2015; 22: 164-74. DOI: 10.1016/j. cmet.2015.05.010.
7. Smith SC, Zhang X, Zhang X, et al. GDF11 does not rescue aging-related pathological hypertrophy. Circ Res 2015; 117 (11): 926-32. DOI: 10.1161/CIRCRESAHA.115.307527.
8. Kuznik BI, Davydov SO Stepanov AV, Morar NV. Influence of kinesitherapeutic procedures on the maintenance of irisin in women with diseases of the cardiovascular system depending on body weight and hormonal status. Patolicheskaya fiziologiya and experimentalnaya therapiya. 2016; 4: 47-51. (In Russ.) Кузник Б. И., Давыдов С. О., Степанов А. В., Морарь Н. В. Влияние кинезитерапевтических процедур на содержание ирисина у женщин с заболеваниями сердечнососудистой системы в зависимости от массы тела и гормонального статуса. Патол. физиол. и экспер. терапия. 2016; 4: 47-51.
9. Kuznik BI, Davydov SO, Stepanov AV, Morar NV. Change in the concentration of irisin in the blood of patients with essential hypertension after physical exertion. Cardiologiya. 2017; 57 (4): 77-8. (In Russ.) Кузник Б. И., Давыдов С. О., Степанов А. В., Морарь Н. В. Изменение концентрации ирисина в крови больных гипертонической болезнью после физической нагрузки. Кардиология. 2017; 57 (4): 77-8. DOI: 10.18565/cardio.2017.4.77-78
10. Fine I, Kaminsky AV, Shenkman L A new sensor for stress measurement based on blood flow fluctuations. Proc. of SPIE 2016; 9707:970705-1. DOI: 10.1117/12.2212866.
11. Julien C. The enigma of Mayer waves: facts and models. Cardiovascular research. 2006. 70 (1): 12-21.
12. Xue B, Johnson AK, Hay M. Sex differences in angiotensin II- and aldosterone-induced hypertension: the central protective effects of estrogen. Am J Physiol Regul Integr Comp Physiol 2013; 305 (5): R459-63. DOI: 10.1007/s11906-013-0408-6.
13. Roitman EV. Clinical haemorheology. Tromboz, gemostaz i reologija 2003; 3: 13-27. (In Russ.) Ройтман Е. В. Клиническая гемореология. Тромбоз, гемостаз и реология 2003; 3: 13-27.
14. Muraviev AV, Tikhomirova IA, Oslyakova AO, et al. Evaluation of hemorrheological status and microcirculation in healthy individuals and patients with hypertensive disease. Regionarnoe krovoobrashhenie i mikrocirkuljacija 2009; 3: 37-42. (In Russ.) Муравьев А. В., Тихомирова И. А., Ослякова А. О. и др. Оценка гемореологического статуса и состояние микроциркуляции у здоровых лиц и больных гипертоническкой болезнью. Регионарное кровообращение и микроциркуляция 2009; 3: 37-42.
15. Medvedev IN. Microrheological parameters of erythrocytes in arterial hypertension and dyslipidemia on the background of complex hypolipidemic action. Russ J Cardiol 2017; 4 (144): 13-8. (In Russ.) Медведев И. Н. Микрореологические параметры эритроцитов при артериальной гипертонии и дислипидемии на фоне комплексного гиполипидемического воздействия. Российский кардиологический журнал 2017; 4 (144): 13-8. DOI: 10.15829/1560-4071-2017-4-13-18.
16. Ushakov AV, Ivanchenko VS, Gagarina AA. Features of the profile of blood pressure and heart rate variability in patients with arterial hypertension, depending on the level of physical activity and psychoemotional stress. Russ J Cardiol 2017; 4 (144): 23-8. (In Russ.) Ушаков А. В., Иванченко В. С., Гагарина А. А. Особенности профиля артериального давления и вариабильности сердечного ритма у больных артериальной гипертензией в зависимости от уровня физической активности и психоэмоционального напряжения. Российский кардиологический журнал 2017; 4 (144): 23-8. DOI: 10.15829/1560-4071-2017-4-23-28.
17. Williams G, Zentar MP, Gajendra S, et al. Transcriptional basis for the inhibition of neural stem cell proliferation and migration by the TGFβ-family member GDF11. PloS One 2014; 8 (11): e78478. DOI: 10.1371/journal.pone.0078478.
Review
For citations:
Guseva E.S., Davydov S.O., Kuznik B.I., Smolyakov Yu.N., Stepanov A.V., Fine I.V., Magen E. THE ROLE OF GROWTH DIFFERENTIATION FACTOR 11 (GDF11) IN REGULATION OF LIPID METAbOLISM AND CARDIOHEMODYNAMIC FUNCTIONS IN ESSENTIAL HYPERTENSION PATIENTS IN MODERATE EFFORT ExERCISES. Russian Journal of Cardiology. 2018;(4):93-98. (In Russ.) https://doi.org/10.15829/1560-4071-2018-4-93-98