ГЕНЕТИЧЕСКИ ДЕТЕРМИНИРОВАННЫЕ НАРУШЕНИЯ РИТМА СЕРДЦА
Аннотация
Генетические факторы играют важную роль в патогенезе большого числа болезней. Показано, что потенциал– зависимые натриевые, калиевые и кальциевые каналы проявляют общие свойства молекулярной структуры, что важно учитывать при оценке их физиологической функции. Наследственные заболевания, обусловленные изменениями этих свойств, относятся к “каналопатиям” или первичным электрическим заболеваниям сердца (синдром удлиненного интервала QT, синдром укороченного интервала QT, синдром Бругада, катехоламин – зависимая желудочковая тахикардия, идиопатическая фибрилляция желудочков, болезнь Ленегре, наследственный синдром Вольфа- Паркинсона-Уайта, наследственная форма фибрилляции предсердий). Ведущей причиной внезапной сердечной смерти (ВСС) после коронарной болезни сердца являются вторичные наследственные электрические заболевания, к которым относятся кардиомиопатии (гипертрофическая кардиомиопатия, дилатационная кардиомиопатия, аритмогенная дисплазия правого желудочка, изолированная некомпактность миокарда левого желудочка). Генетически детерминированные нарушения ритма сердца (НРС) как при отсутствии, так и при наличии структурной патологии сердца, как правило, манифестируют в молодом возрасте (за исключением синдрома Бругада) и имеют определенные фенотипические и генотипические черты. Основой своевременной диагностики этих состояний является ЭКГ- скрининг, который оптимально должен быть выполнен в возрасте до 3-х лет (выявление патологических ЭКГ- феноменов), и ЭхоКГ. Кроме того, большое диагностическое значение имеет обследование семей из группы высокого риска по ВСС. Высокий суммарный уровень риска ВСС у больных с генетически детерминированными НРС на фоне терапии является показанием к имплантации искусственного кардиовертера-дефибриллятора (ИКД). Оптимальная стратегия профилактики ВСС у больных с генетически детерминированными НРС – это определение базового риска и последующий мониторинг больных в соответствии с индивидуальным профилем риска. В обзоре приводится описание клинических проявлений, молекулярно-генетических особенностей, критериев риска ВСС и современных подходов к диагностике и лечению генетически детерминированных НРС.
Ключевые слова
Об авторах
М. А. ШкольниковаРоссия
д.м.н., профессор, руководитель центра, Президент Всероссийской общественной организации “Ассоциация детских кардиологов России”, главный детский кардиолог Москвы
М. С. Харлап
Россия
к.м.н., врач-кардиолог рентгеноперационного кабинета на базе Отдела клинической электрофизиологии и рентген-хирургических методов лечения нарушений ритма сердца Института, врач функциональной диагностики Отделения функциональной диагностики центра
Р. А. Ильдарова
Россия
врач-кардиолог консультативного отделения со стационаром дневного пребывания
Список литературы
1. Габрусенко С. А. Современные подходы к лечению больных гипертрофической кардиомиопатией/ С. А. Габрусенко, Ю. В. Сафрыгина, В. Г. Наумов и др. Лечащий врач. 2004; № 2: 32-37.
2. Школьникова М. А. Первичные электрические заболевания сердца как причина внезапной смерти. Доктор.ru. 2008; 3: 25-32.
3. Школьникова М. А. Прогнозирование риска развития жизнеугрожающих состояний и внезапной смерти при нарушениях сердечного ритма у детей, принципы профилактики. Автореферат докт. дисс. М.-1993.-106с.
4. Школьникова М. А. Жизнеугрожающие аритмии у детей. Москва, Нефтяник, 1999.
5. AHA/ACCF/HRS Recommendations for the Standardization and Interpretation of the Electrocardiogram Part IV: The ST Segment, T and U Waves, and the QT Interval A Scientific Statement From the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society Endorsed by the International Society for Computerized Electrocardiology. Pentti M. Rautaharju, MD, PhD; Borys Surawicz, MD, FAHA, FACC; Leonard S. Gettes, MD, FAHA, FACC. J.Am.Coll.Cardiol. published online Feb 19, 2009.
6. Ankerman M. Cardiac causes of sudden unexpected death in children and their relationship to seizures and syncope: genetic testing for cardiac electropathies. Semin. Pediatr. Neurol. 2005; 12:52-58.
7. Antzelevitch C., Burashnikov A., Di Diego J. Mechanisms of cardiac arrhythmia. 2008. pp 65-133.
8. Antzelevitch C., Pollevick G., Cordeiro J., et al. Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation. 2007; 115:442-449.
9. Bellocq C., Van Ginneken A., Bezzina C., et al. Mutation in KCNQ1 gene leading to the short QT-interval syndrome. Circulation. 2004; 109:2394-2397.
10. Chen P., Priori S. The Brugada Syndrome. JACC. 2008; 51(12): 1176-1180.
11. Crotti L., Celano G., Dagradi F., et al. Congenital long QT syndrome. Orphanet J Rare Diseases 2008, 3:18.
12. Denjoy I, Lupoglazoff J., Guicheney P., et al. Arrhythmic sudden death in children. Archives of Cardiovascular Diseases. 2008; 101:121-125.
13. Donaldson M, R., Yoon G., Fu Y. H. et al. Andersen-Tawil syndrome: a model of clinical variability, pleiotropy, and genetic heterogeneity. Ann Med. 2004; 36 (Suppl 1): 92–7.
14. Engberding R., Stollberger C., Ong P. et al. Isolated Non-Compaction Cardiomyopathy Dtsch Arztebl Int. 2010 March; 107(12): 206–213.
15. Gussak I., Antzelevitch C. Electrical diseases of the heart. Genetics, mechanisms, treatment, prevention. Springer. 2008. pp.461-654, 705-719.
16. Keating M., Atkinson D., Dunn C., et al. Linkage of a cardiac arrhythmia, the long QT syndrome, and the Harvey ras-1 gene. Science. 1991 May 3; 252(5006):704–706.
17. Leenhard A., Lucet V., Denjoy I. et al. Cateholaminergic polymorphic ventricular tachycardia in children. A 7-year follow up of 21 patients. Circulation. 1995; 91: 1512-1519.
18. Marks M. L., Trippel D. L., Keating M. T. Long QT syndrome associated with syndactyly identified in females. Am J Cardiol. 1995; 76:744-745.
19. Maron B. J., Towbin J. A., Thiene G., et al. Contemporary Definitions and Classification of the Cardiomyopathies: An American Heart Association Scientific Statement From the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation. 8722; 2006; 113: 1807-1816.
20. McKenna W. J., Behr E. R. Hypertrophic cardiomyopathy: management, risk stratification, and prevention of sudden death. Heart. 2002; 87:169-176.
21. Moss A. J. Liu J. E. Gottlieb S. et al. Efficacy of permanent pacing in the management of high-risk patient with long QT syndrome. Circulation 1991; 84: 1524-1529.
22. Patel Ch., Antzelevich Ch. Pharmacological approach to the treatment of long and short QT syndromes. Pharmacology and Therapeutices, 2008; 3(118): 138-151.
23. Priori S. G., Antzelevitch C.: Inherited arrhythmogenic diseases. In Sudden Cardiac Death / Ed. by Silvia G. Priori, Douglas P. Zipes. 2006.
24. Priori S., Pandit S., Rivolta I., et al. A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ Res. 2005; 96: 800-807.
25. Sansone V., Tawil R. Management and treatment of Andersen-Tawil syndrome. Neurotherapeutics. 2007; 4(2):233-237.
26. Sauer A., Moss A., McNitt S., et al. Long QT syndrome in adults. J Am Coll Cardiol, 49: 329-337, 2007.
27. Schimpf R., Wolpert Ch., Gaita F. et al. Short QT syndrome. Cardiovascular research. 2005; 67: 357-364.
28. Schwartz P.J., Moss A.J., Vincent G.M., et al. Diagnostic criteria for the long QT syndrome. An update. Circulation. 1993; 88: 782-784.
29. Schwartz P. J., Spazzolini C., Crotti L., et al. The Jervell and Lange-Nielsen Syndrome. Natural history, molecular basis, and clinical outcome. Circulation 2006; 113:783-790.
30. Schwartz P.J., Priori S.G., Locati E.H., et al. Long QT syndrome patients with mutations on the SCN5A and HERG genes have differential responses to Na+ channel blockage and to increases in heart rate. Implications for gene-specific therapy. Circulation. 1955; 92: 3381-6.
31. Schwartz P.J., Priori S.G., Cerrone M., et al. Left cardiac sympathetic denervation in the management of high-risk patients affected by the long QT syndrome. Circulation 2004, 109: 1826-1833.
32. Splawski I., Timothy K.W., Sharpe L.M., et al. Ca (V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell. 2004; 119:19-31.
33. Weisz S.H., Limongelli G., Pacileo G. et al. Left ventricular non compaction in children. Congenit Heart Dis. 2010; 5(5):284-297.
34. Zareba W., Moss A.J., Schwartz P.J. et al. Influence of genotype on the clinical course of the long-QT syndrome. International Long-QT Syndrome Registry Research Group. N Engl J Med. 1998; 339: 960-5.
35. Zipes D.P., Jalife J. Cardiac electrophysiology. From cell to bedside. Elsevier. Fifth edition. 2009. Ventricular arrhythmias: mechanisms, features, and, management. pp 675-699, 723-779.
Рецензия
Для цитирования:
Школьникова М.А., Харлап М.С., Ильдарова Р.А. ГЕНЕТИЧЕСКИ ДЕТЕРМИНИРОВАННЫЕ НАРУШЕНИЯ РИТМА СЕРДЦА. Российский кардиологический журнал. 2011;(1):8-25.
For citation:
Shkolnikova M.A., Kharlap M.S., Ildarova R.A. GENETICALLY DETERMINED CARDIAC ARRHYTHMIAS. Russian Journal of Cardiology. 2011;(1):8-25. (In Russ.)