Preview

Russian Journal of Cardiology

Advanced search

2024 Clinical practice guidelines for Acute myocardial infarction with ST segment elevation electrocardiogram

https://doi.org/10.15829/1560-4071-2025-6306

EDN: IVJCUK

Abstract

Russian Society of Cardiology (RSC)
With the participation of: the Association of Cardiovascular Surgeons, the Russian Society of Emergency Medical Care, the Russian Association of Ultrasound Diagnostics Specialists in Medicine (RASUDM)
Approved by the Research and Practical Council of the Ministry of Health of the Russian Federation
 

About the Authors

O. V. Averkov

Russian Federation

Competing Interests:

нет



G. K. Harutyunyan

Russian Federation

Competing Interests:

нет



D. V. Duplyakov

Russian Federation

Competing Interests:

нет



E. V. Konstantinova

Russian Federation

Competing Interests:

нет



N. N. Konstantinova

Russian Federation

Competing Interests:

нет



R. M. Shakhnovich

Russian Federation

Competing Interests:

нет



I. S. Yavelov

Russian Federation

Competing Interests:

нет



A. N. Yakovlev

Russian Federation

Competing Interests:

нет



S. A. Abugov

Russian Federation

Competing Interests:

нет



B. G. Alekyan

Russian Federation

Competing Interests:

нет



D. M. Aronov

Russian Federation

Competing Interests:

нет



M. V. Arkhipov

Russian Federation

Competing Interests:

нет



O. L. Barbarash
нет
Russian Federation

Competing Interests:

нет



S. A. Boytsov

Russian Federation

Competing Interests:

нет



M. G. Bubnova

Russian Federation

Competing Interests:

нет



T. N. Vavilova

Russian Federation

Competing Interests:

нет



E. Yu. Vasilyeva

Russian Federation

Competing Interests:

нет



A. S. Galyavich

Russian Federation

Competing Interests:

нет



V. I. Ganyukov

Russian Federation

Competing Interests:

нет



S. R. Gilyarevsky

Russian Federation

Competing Interests:

нет



E. P. Golubev

Russian Federation

Competing Interests:

нет



E. Z. Golukhova

Russian Federation

Competing Interests:

нет



D. A. Zateyshchikov

Russian Federation

Competing Interests:

нет



Yu. A. Karpov

Russian Federation

Competing Interests:

нет



E. D. Kosmacheva

Russian Federation

Competing Interests:

нет



Yu. M. Lopatin

Russian Federation

Competing Interests:

нет



V. A. Markov

Russian Federation

Competing Interests:

нет



E. V. Merkulov

Russian Federation

Competing Interests:

нет



N. A. Novikova

Russian Federation

Competing Interests:

нет



E. P. Panchenko

Russian Federation

Competing Interests:

нет



D. V. Pevzner

Russian Federation

Competing Interests:

нет



N. V. Pogosova

Russian Federation

Competing Interests:

нет



D. M. Prasol

Russian Federation

Competing Interests:

нет



A. V. Protopopov

Russian Federation

Competing Interests:

нет



D. V. Skrypnik

Russian Federation

Competing Interests:

нет



R. S. Tarasov

Russian Federation

Competing Interests:

нет



S. N. Tereshchenko

Russian Federation

Competing Interests:

нет



S. A. Ustyugov

Russian Federation

Competing Interests:

нет



A. V. Khripun

Russian Federation

Competing Interests:

нет



E. A. Tsebrovskaya

Russian Federation

Competing Interests:

нет



S. V Shalaev

Russian Federation

Competing Interests:

нет



E. V. Shlyakhto

Russian Federation

Competing Interests:

нет



A. V Shpektor

Russian Federation

Competing Interests:

нет



S. S. Yakushin

Russian Federation

Competing Interests:

нет



References

1. Andreeva NS, Rebrova OYu, Zorin NA, et al. Systems for assessing the reliability of scientific evidence and the credibility of recommendations: comparative characteristics and prospects for unification. Medical technologies. Assessment and selection. 2012;4:10-24. (In Russ.)

2. Thygesen K, Alpert JS, Jaffe AS, et al.; ЕОК Scientific Document Group. Fourth universal definition of myocardial infarction. 2018. Eur Heart J. 2019;40:237-69.

3. Vaduganathan M, Mensah GA, Varieur Turco J, et al. The Global Burden of Cardiovascular Diseases and Risk: A Compass for Future Health. J Am Coll Cardiol. 2022;80(25): 2361-71. doi: 10.1016/j.jacc.2022.11.005.

4. McManus DD, Gore J, Yarzebski J, et al. Recent trends in the incidence, treatment, and outcomes of patients with STEMI and NSTEMI. Am J Med. 2011;124(1):40-7.

5. Jernberg T, Hasvold P, Henriksson M, et al. Cardiovascular risk in post-myocardial infarction patients: nationwide real world data demonstrate the importance of a long-term perspective. Eur Heart J. 2015;36(19):1163-70. doi: 10.1093/eurheartj/ehu505.

6. Jernberg T, Hasvold P, Henriksson M, et al. Cardiovascular risk in post-myocardial infarction patients: nationwide real world data demonstrate the importance of a long-term perspective. Eur Heart J. 2015;36(19):1163-70. doi: 10.1093/eurheartj/ehu505.

7. Pasupathy S, Air T, Dreyer RP, et al. Systematic review of patients presenting with suspected myocardial infarction and nonobstructive coronary arteries. Circulation. 2015;131:861-70.

8. Niccoli G, Scalone G, Crea F. Acute myocardial infarction with no obstructive coronary atherosclerosis: mechanisms and management. Eur Heart J. 2015;36:475-81.

9. Byrne RA, Rossello X, Coughlan JJ, et al.; ESC Scientific Document Group. 2023 ESC Guidelines for the management of acute coronary syndromes. Eur Heart J. 2023; 44(38):3720-826. doi: 10.1093/eurheartj/ehad191.

10. Neumann JT, Twerenbold R, Ojeda F, et al. Application of High-Sensitivity Troponin in Suspected Myocardial Infarction. N Engl J Med. 2019;380:2529-40.

11. Pickering JW, Than MP, Cullen L, et al. Rapid Rule-out of Acute Myocardial Infarction With a Single High-Sensitivity Cardiac Troponin T Measurement Below the Limit of Detection: A Collaborative Meta-analysis. Ann Intern Med. 2017;166:715-3724.

12. Twerenbold R, Boeddinghaus J, Nestelberger T, et al. Clinical use of high-sensitivity cardiac troponin in patients with suspected myocardial infarction. J Am Coll Cardiol. 2017; 70:996-1012. doi: 10.1016/j.jacc.2017.07.718.

13. Camaro C, Aarts, GWA, Abang EMM, et al. Rule-out of non-ST-segment elevation acute coronary syndrome by a single, pre-hospital troponin measurement: a randomized trial. European Heart Journal. 2023;44(19):1705-14. doi: 10.1093/eurheartj/ehad056.

14. Ghaffari S, Pourafkari L, Sepehrvand N, et al. Red Cell Distribution Width Is a Predictor of ST Resolution and Clinical Outcome Following Thrombolysis in Acute ST Elevation Myocardial Infarction. Thromb Res. 2016;140:1-6.

15. Gore JM, Spencer FA, Gurfinkel EP, et al. Thrombocytopenia in patients with an acute coronary syndrome (from the Global Registry of Acute Coronary Events [GRACE]). Am J Cardiol. 2009;103:175-80. doi: 10.1016/j.amjcard.2008.08.055.

16. Long M, Ye Z, Zheng J, et al. Dual anti-platelet therapy following percutaneous coronary intervention in a population of patients with thrombocytopenia at baseline: a metaanalysis. BMC Pharmacol Toxicol. 2020;21:31. doi: 10.1186/s40360-020-00409-2.

17. Mathews R, Peterson E, Chen AY, et al. In-Hospital Major Bleeding During ST-Elevation and Non—STElevation Myocardial Infarction Care: Derivation and Validation of a Model from the ACTION Registry®-GWTG™. Am J Cardiol. 2011;107:1136-43.

18. D'Ascenzo F, Biondi-Zoccai G, Moretti C, et al. TIMI, GRACE and alternative risk scores in acute coronary syndromes: a meta-analysis of 40 derivation studies on 216,552 patients and of 42 validation studies on 31,625 patients. Contemporary clinical trials. 2012;33: 507-14.

19. McNamara RL, Kennedy KF, Cohen DJ, et al. Predicting In-Hospital Mortality in Patients With Acute Myocardial Infarction. JACC. 2016;68:626-35.

20. Bartnik M, Malmberg K, Norhammar A, et al. Newly detected abnormal glucose tolerance: an important predictor of long-term outcome after myocardial infarction. Eur Heart J. 2004;25:1990-7.

21. Ferrannini G, De Bacquer D, De Backer G, et al. Screening for glucose perturbations and risk factor management in dysglycemic patients with coronary artery disease— a persistent challenge in need of substantial improvement: a report from ESC EORP EUROASPIRE V. Diabetes Care. 2020;43:726-33. doi: 10.2337/dc19-2165.

22. Ritsinger V, Tanoglidi E, Malmberg K, et al. Sustained prognostic implications of newly detected glucose abnormalities in patients with acute myocardial infarction: long-term follow-up of the Glucose Tolerance in Patients with Acute Myocardial Infarction cohort. Diab Vasc Dis Res. 2015;12:23-32. doi: 10.1177/1479164114551746.

23. Svensson AM, McGuire DK, Abrahamsson P, Dellborg M. Association between hyperand hypoglycaemia and 2 year all-cause mortality risk in diabetic patients with acute coronary events. Eur Heart J. 2005;26:1255-61. doi: 10.1093/eurheartj/ehi230.

24. Pinto DS, Skolnick AH, Kirtane AJ, et al. U-shaped relationship of blood glucose with adverse outcomes among patients with ST-segment elevation myocardial infarction. J Am Coll Cardiol. 2005;46:178-80. doi: 10.1016/j.jacc.2005.03.052.

25. Marx N, Federici M, Schütt K, et al. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes. Eur Heart J. 2023;44(39):4043-140. doi: 10.1093/eurheartj/ehad192.

26. Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020; 41:111-88. doi: 10.1093/eurheartj/ehz455.

27. Ference BA, Ginsberg HN, Graham I, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017;38:2459-72. doi: 10.1093/eurheartj/ehx144.

28. Sidhu D, Naugler C. Fasting time and lipid levels in a community-based population: a cross-sectional study. Arch Intern Med. 2012;172(22):1707-10.

29. Goyal A, Spertus JA, Gosch K, et al. Serum potassium levels and mortality in acute myocardial infarction. JAMA. 2012;307:157-64.

30. Shirakabe A, Hata N, Kobayashi N, et al. Clinical significance of acid-base balance in an emergency setting in patients with acute heart failure. J Cardiol. 2012;60(4):288-94. doi: 10.1016/j.jjcc.2012.06.004.

31. Maciejewski P, Bednarz B, Chamiec T, et al. Acute coronary syndrome: potassium, magnesium and cardiac arrhythmia. Kardiol Pol. 2003;59(11):402-7.

32. Babes EE, Zaha DC, Tit DM, et al. Value of Hematological and Coagulation Parameters as Prognostic Factors in Acute Coronary Syndromes. Diagnostics (Basel). 2021;11(5):850. doi: 10.3390/diagnostics11050850.

33. Su H, Cao Y, Chen Q, et al. The association between fibrinogen levels and severity of coronary artery disease and long-term prognosis following percutaneous coronary intervention in patients with type 2 diabetes mellitus. Front Endocrinol (Lausanne). 2023;14:1287855. doi: 10.3389/fendo.2023.1287855.

34. Shi Y, Wu Y, Bian C, et al. Predictive value of plasma fibrinogen levels in patients admitted for acute coronary syndrome. Tex Heart Inst J. 2010;37(2):178-83.

35. Perelló R, Calvo M, Miró O, et al. Clinical presentation of acute coronary syndrome in HIV infected adults: a retrospective analysis of a prospectively collected cohort. Eur J Intern Med. 2011;22(5):485-8. doi: 10.1016/j.ejim.2011.02.017.

36. Seecheran VK, Giddings SL, Seecheran NA. Acute coronary syndromes in patients with HIV. Coron Artery Dis. 2017;28(2):166-72. doi: 10.1097/MCA.0000000000000450.

37. Žvirblytė R, Ereminienė E, Montvilaitė A, et al. Syphilitic coronary artery ostial stenosis resulting in acute myocardial infarction. Medicina (Kaunas). 2017;53(3):211-6. doi: 10.1016/j.medici.2017.06.001.

38. Fu Y, Chen M, Sun H, et al. Blood group A: a risk factor for heart rupture after acute myocardial infarction. BMC Cardiovasc Disord. 2020;20(1):471. doi:10.1186/s12872-020-01756-y.

39. Scudiero F, Valenti R, Marcucci R, et al. Platelet Reactivity in Hepatitis C Virus-Infected Patients on Dual Antiplatelet Therapy for Acute Coronary Syndrome. J Am Heart Assoc. 2020;9(18):e016441. doi: 10.1161/JAHA.120.016441.

40. Kuo PL, Lin KC, Tang PL, et al. Contribution of Hepatitis B to Long-Term Outcome Among Patients With Acute Myocardial Infarction: A Nationwide Study. Medicine (Baltimore). 2016;95(5):e2678. doi: 10.1097/MD.0000000000002678.

41. Diercks DB, Peacock WF, Hiestand BC, et al. Frequency and consequences of recording an electrocardiogram >10 minutes after arrival in an emergency room in non-ST-segment elevation acute coronary syndromes (from the CRUSADE Initiative). Am J Cardiol. 2006;97:437-42. doi: 10.1016/j.amjcard.2005.09.073.

42. Schmitt C, Lehmann G, Schmieder S, et al. Diagnosis of acute myocardial infarction in angiographically documented occluded infarct vessel: limitations of ST-segment elevation in standard and extended ECG leads. Chest. 2001;120:1540-6. doi: 10.1378/chest.120.5.1540.

43. Drozdov DV, Makarov LM, Barkan VS, et al. Registration of a resting electrocardiogram in 12 conventional leads for adults and children in 2023. Methodological recommendations. Russian Journal of Cardiology. 2023;28(10):5631. (In Russ.) doi: 10.15829/1560-4071-2023-5631.

44. Fesmire FM, Percy RF, Bardoner JB, et al. Usefulness of automated serial 12-lead ECG monitoring during the initial emergency department evaluation of patients with chest pain. Ann Emerg Med. 1998;31:3-11.

45. Rouan GW, Lee TH, Cook EF, et al. Clinical characteristics and outcome of acute myocardial infarction in patients with initially normal or nonspecific electrocardiograms (a report from the Multicenter Chest Pain Study). Am J Cardiol. 1989;64:1087-92.

46. McCarthy BD, Wong JB, Selker HP. Detecting acute cardiac ischemia in the emergency department: a review of the literature. J Gen Intern Med. 1990;5:365-73.

47. Savonitto S, Ardissino D, Granger CB, et al. Prognostic value of the admission electrocardiogram in acute coronary syndromes. JAMA. 1999;281:707-13.

48. Zalenski RJ, Rydman RJ, Sloan EP, et al. Value of posterior and right ventricular leads in comparison to the standard 12-lead electrocardiogram in evaluation of ST-segment elevation in suspected acute myocardial infarction. Am J Cardiol. 1997;79:1579-85.

49. Matetzky S, Freimark D, Feinberg MS, et al. Acute myocardial infarction with isolated ST-segment elevation in posterior chest leads V7-9: "hidden" ST-segment elevations revealing acute posterior infarction. J Am Coll Cardiol. 1999;34:748-53.

50. Boden WE, Kleiger RE, Gibson RS, et al. Electrocardiographic evolution of posterior acute myocardial infarction: importance of early precordial ST-segment depression. Am J Cardiol. 1987;59:782-7.

51. Winkler C, Funk M, Schindler DM, et al. Arrhythmias in patients with acute coronary syndrome in the first 24 hours of hospitalization. Heart Lung. 2013;42:422-7. doi: 10.1016/j.hrtlng.2013.07.010.

52. O'Doherty M, Tayler DI, Quinn E, et al. Five hundred patients with myocardial infarction monitored within one hour of symptoms. Br Med J (Clin Res Ed). 1983;286:1405-8. doi: 10.1136/bmj.286.6375.1405.

53. Mehta RH, Starr AZ, Lopes RD, et al. Incidence of and outcomes associated with ventricular tachycardia or fibrillation in patients undergoing primary percutaneous coronary intervention. JAMA. 2009;301:1779-89. doi: 10.1001/jama.2009.600.

54. Kalarus Z, Svendsen JH, Capodanno D, et al. Cardiac arrhythmias in the emergency settings of acute coronary syndrome and revascularization: an European Heart Rhythm Association (EHRA) consensus document, endorsed by the European Association of Percutaneous Cardiovascular Interventions (EAPCI), and European Acute Cardiovascular Care Association (ACCA) Europace. 2019;21:1603-4.

55. Keeley EC, Boura JA, Grines CL. Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction: a quantitative review of 23 randomised trials. Lancet. 2003;361:13-20.

56. Armstrong PW, Gershlick AH, Goldstein P, et al.; STREAM Investigative Team. Fibrinolysis or primary PCI in ST-segment elevation myocardial infarction. N Engl J Med. 2013;368(15):1379-87.

57. Funke Küpper AJ, Verheugt FW, Peels CH, et al. Left ventricular thrombus incidence and behavior studied by serial two-dimensional echocardiography in acute anterior myocardial infarction: left ventricular wall motion, systemic embolism and oral anticoagulation. J Am Coll Cardiol. 1989;13:1514-20. doi: 10.1016/0735-1097(89)90341-0.

58. Weinsaft JW, Kim J, Medicherla CB, et al. Echocardiographic algorithm for post-myocardial infarction LV thrombus: a gatekeeper for thrombus evaluation by delayed enhancement CMR. JACC Cardiovasc Imaging. 2016;9:505-15. doi: 10.1016/j.jcmg.2015.06.017.

59. Lancellotti P, Price S, Edvardsen T, et al. The use of echocardiography in acute cardiovascular care: recommendations of the European Association of Cardiovascular Imaging and the Acute Cardiovascular Care Association. Eur Heart J Cardiovasc Imaging. 2015;16:119-46. doi: 10.1093/ehjci/jeu210.

60. Mareev YuV, Dzhioeva ON, Zorya OT, et al. Focus ultrasound for cardiology practice. Russian consensus document. Kardiologiia. 2021;61(11):4-23. (In Russ.)

61. Kim HW, Faraneh-Far A, Kim RJ. Cardiovascular magnetic resonance in patients with myocardial infarction. J Am Coll Cardiol. 2009;55:1-16.

62. Beek AM, van Rossum AC. Cardiovascular magnetic resonance imaging in patients with acute myocardial infarction. Heart. 2010;96:237-43.

63. de Waha S, Eitel I, Desch S, et al. Prognosis after ST-elevation myocardial infarction: a study on cardiac magnetic resonance imaging versus clinical routine. Trials. 2014;15:249. doi: 10.1186/1745-6215-15-249.

64. Larose E, Côté J, Rodés-Cabau J, et al. Contrast-enhanced cardiovascular magnetic resonance in the hyperacute phase of ST-elevation myocardial infarction. Int J Cardiovasc Imaging. 2009;25:519-27. doi: 10.1007/s10554-009-9451-4.

65. Stiermaier T, Jobs A, de Waha S, et al. Optimized prognosis assessment in ST-segmentelevation myocardial infarction using a cardiac magnetic resonance imaging risk score. Circ Cardiovasc Imaging. 2017;10:e006774. doi: 10.1161/circimaging.117.006774.

66. de Waha S, Desch S, Eitel I, et al. Impact of early vs. late microvascular obstruction assessed by magnetic resonance imaging on long-term outcome after ST-elevation myocardial infarction: a comparison with traditional prognostic markers. Eur Heart J. 2010;31:2660-8. doi: 10.1093/eurheartj/ehq247.

67. van Kranenburg M, Magro M, Thiele H, et al. Prognostic value of microvascular obstruction and infarct size, as measured by CMR in STEMI patients. JACC Cardiovasc Imaging. 2014;7:930-9. doi: 10.1016/j.jcmg.2014.05.010.

68. Bulluck H, Chan MHH, Paradies V, et al. Incidence and predictors of left ventricular thrombus by cardiovascular magnetic resonance in acute ST-segment elevation myocardial infarction treated by primary percutaneous coronary intervention: a metaanalysis. J Cardiovasc Magn Reson. 2018;20:72. doi: 10.1186/s12968-018-0494-3.

69. Velangi PS, Choo C, Chen KA, et al. Long-term embolic outcomes after detection of left ventricular thrombus by late gadolinium enhancement cardiovascular magnetic resonance imaging: a matched cohort study. Circ Cardiovasc Imaging. 2019;12:e009723. doi: 10.1161/circimaging.119.009723.

70. Dedic A, Lubbers MM, Schaap J, et al. Coronary CT angiography for suspected ACS in the era of high-sensitivity troponins: randomized multicenter study. J Am Coll Cardiol. 2016;67:16-26. doi: 10.1016/j.jacc.2015.10.045.

71. Hoffmann U, Truong QA, Schoenfeld DA, et al. Coronary CT angiography versus standard evaluation in acute chest pain. N Engl J Med. 2012;367:299-308. doi: 10.1056/NEJMoa1201161.

72. Gray AJ, Roobottom C, Smith JE, et al. Early computed tomography coronary angiography in patients with suspected acute coronary syndrome: randomised controlled trial. BMJ. 2021;374:n2106. doi: 10.1136/bmj.n2106.

73. Lee KK, Bularga A, O'Brien R, et al. Troponin-guided coronary computed tomographic angiography after exclusion of myocardial infarction. J Am Coll Cardiol. 2021;78:1407-17. doi: 10.1016/j.jacc.2021.07.055.

74. Linde JJ, Hove JD, Sorgaard M, et al. Long-term clinical impact of coronary CT angiography in patients with recent acute-onset chest pain: the randomized controlled CATCH trial. JACC Cardiovasc Imaging. 2015;8:1404-13. doi: 10.1016/j.jcmg.2015.07.015.

75. Litt HI, Gatsonis C, Snyder B, et al. CT angiography for safe discharge of patients with possible acute coronary syndromes. N Engl J Med. 2012;366:1393-403. doi:10.1056/NEJMoa1201163.

76. Hulten E, Pickett C, Bittencourt MS, et al. Outcomes after coronary computed tomography angiography in the emergency department: a systematic review and meta-analysis of randomized, controlled trials. J Am Coll Cardiol. 2013;61:880-92. doi:10.1016/j.jacc.2012.11.061.

77. Nabi F, Kassi M, Muhyieddeen K, et al. Optimizing evaluation of patients with low-tointermediate-risk acute chest pain: a randomized study comparing stress myocardial perfusion tomography incorporating stress-only imaging versus cardiac CT. J Nucl Med. 2016;57:378-84. doi: 10.2967/jnumed.115.166595.

78. Çitaku H, Miftari R, Stubljar D, Krasniqi X. Size of Acute Myocardial Infarction Correlates with Earlier Time of Initiation of Reperfusion Therapy with Cardiac Perfusion Scintigraphy: A National Single-Center Study. Med Sci Monit Basic Res. 2021;27:e933214.

79. James O, Borges-Neto S. Scintigraphic outlook of patients and regions with myocardial necrosis at myocardial perfusion scintigraphy. J Nucl Cardiol. 2018;25(2):506-7. doi: 10.1007/s12350-017-0796-0. Erratum in: J Nucl Cardiol. 2018;25(2):508. doi: 10.1007/s12350-017-0861-8.

80. Lim TW, Karim TS, Fernando M, et al. Utility of Zwolle Risk Score in Guiding Low-Risk STEMI Discharge. Heart Lung Circ. 2021;30(4):489-95. doi: 10.1016/j.hlc.2020.08.026.

81. Parr CJ, Avery L, Hiebert B, et al. Using the Zwolle Risk Score at Time of Coronary Angiography to Triage Patients With ST-Elevation Myocardial Infarction Following Primary Percutaneous Coronary Intervention or Thrombolysis. J Am Heart Assoc. 2022; 11(4):e024759. doi: 10.1161/JAHA.121.024759.

82. Williams C, Fordyce CB, Cairns JA, et al. Temporal Trends in Reperfusion Delivery and Clinical Outcomes Following Implementation of a Regional STEMI Protocol: A 12-Year Perspective. CJC Open. 2022;5(3):181-90. doi: 10.1016/j.cjco.2022.11.015.

83. Jortveit J, Pripp AH, Halvorsen S. Outcomes after delayed primary percutaneous coronary intervention vs. pharmaco-invasive strategy in ST-segment elevation myocardial infarction in Norway. Eur Heart J Cardiovasc Pharmacother. 2022;8(5):442-51. doi: 10.1093/ehjcvp/pvab041.

84. Bainey KR, Armstrong PW, Zheng Y, et al. Pharmacoinvasive Strategy Versus Primary Percutaneous Coronary Intervention in ST-Elevation Myocardial Infarction in Clinical Practice: Insights From the Vital Heart Response Registry. Circ Cardiovasc Interv. 2019;12(10):e008059. doi: 10.1161/CIRCINTERVENTIONS.119.008059.

85. Boersma E, Maas AC, Deckers JW, Simoons ML. Early thrombolytic treatment in acute myocardial infarction: reappraisal of the golden hour. Lancet. 1996;348:771-5. doi: 10.1016/s0140-6736(96)02514-7.

86. Boersma E. Does time matter? A pooled analysis of randomized clinical trials comparing primary percutaneous coronary intervention and in-hospital fibrinolysis in acute myocardial infarction patients. Eur Heart J. 2006;27:779-88. doi: 10.1093/eurheartj/ehi810.

87. Hochman JS, Lamas GA, Buller CE, et al., Occluded Artery Trial Investigators. Coronary intervention for persistent occlusion after myocardial infarction. N Engl J Med. 2006;355(23):2395-407.

88. Schomig A, Mehilli J, Antoniucci D, et al. Beyond 12 hours reperfusion alternative evaluation trial investigators. Mechanical reperfusion in patients with acute myocardial infarction presenting more than 12 hours from symptom onset: a randomized controlled trial. JAMA. 2005;293(23):2865-72.

89. Nadrepepa G, Kastrati A, Mehilli J, et al. Mechanical reperfusion and long-term mortality in patients with acute myocardial infarction presenting 12 to 48 hours from onset of symptoms. JAMA. 2009;301(5):487-8.

90. Bouisset F, Gerbaud E, Bataille V, et al. Percutaneous myocardial revascularization in late-presenting patients with STEMI. J Am Coll Cardiol. 2021;78:1291-305. doi:10.1016/j.jacc.2021.07.039.

91. Busk M, Kaltoft A, Nielsen SS, et al. Infarct size and myocardial salvage after primary angioplasty in patients presenting with symptoms for <12 h vs. 12-72 h. Eur Heart J. 2009;30:1322-30. doi: 10.1093/eurheartj/ehp113.

92. Gierlotka M, Gasior M, Wilczek K, et al. Reperfusion by primary percutaneous coronary intervention in patients with ST-segment elevation myocardial infarction within 12 to 24 hours of the onset of symptoms (from a prospective national observational study [PL-ACS]). Am J Cardiol. 2011;107:501-8. doi: 10.1016/j.amjcard.2010.10.008.

93. Ioannidis JP, Katritsis DG. Percutaneous coronary intervention for late reperfusion after myocardial infarction in stable patients. Am Heart J. 2007;154(6):1065-71.

94. Menon V, Pearte CA, Buller CE, et al. Lack of benefit from percutaneous intervention of persistently occluded infarct arteries after the acute phase of myocardial infarction is time independent: insights from Occluded Artery Trial. Eur Heart J. 2009;30(2):183-91.

95. Bangalore S, Toklu B, Wetterslev J. Complete versus culprit-only revascularization for ST-segment-elevation myocardial infarction and multivessel disease: a meta-analysis and trial sequential analysis of randomized trials. Circ Cardiovasc Interv. 2015;8(4):e002142.

96. Jang JS, Jin HY, Seo JS, et al. The transradial versus the transfemoral approach for primary percutaneous coronary intervention in patients with acute myocardial infarction: a systematic review and meta-analysis. EuroIntervention. 2012;8(4):501-10.

97. Joyal D, Bertrand OF, Rinfret S, et al. Meta-analysis of ten trials on the effectiveness of the radial versus the femoral approach in primary percutaneous coronary intervention. Am J Cardiol. 2012;109(6):813-8.

98. Bertrand OF, Bélisle P, Joyal D, et al. Comparison of transradial and femoral approaches for percutaneous coronary interventions: a systematic review and hierarchical Bayesian meta-analysis. Am J Cardiol. 2012;163(4):632-48.

99. Valgimigli M, Gagnor A, Calabró P, et al. Radial versus femoral access in patients with acute coronary syndromes undergoing invasive management: a randomised multicentre trial. Lancet. 2015;385(9986):2465-76.

100. Zhu MM, Feit A, Chadow H, et al. Primary stent implantation compared with primary balloon angioplasty for acute myocardial infarction: a meta-analysis of randomized clinical trials. Am J Cardiol. 2001;88:297-301.

101. Nordmann AJ, Hengstler P, Harr T, et al. Clinical outcomes of primary stenting versus balloon angioplasty in patients with myocardial infarction: a meta-analysis of randomized controlled trials. Am J Med. 2004;116(4):253-62.

102. Kastrati A, Dibra A, Spaulding C, et al. Meta-analysis of randomized trials on drug-eluting stents vs. bare-metal stents in patients with acute myocardial infarction. Eur Heart J. 2007;28(22):2706-13.

103. Philip F, Stewart S, Southard J. Very late stent thrombosis with second generation drug eluting stents compared to bare metal stents: Network meta-analysis of randomized primary percutaneous coronary intervention trials. Cathet Cardiovasc Interv. 2016; 88:38-48.

104. Sabaté M, Brugaletta S, Cequier A, et al. Clinical outcomes in patients with ST-segment elevation myocardial infarction treated with everolimus-eluting stents versus bare-metal stents (EXAMINATION): 5-year results of a randomised trial. Lancet. 2016;387:357-66. doi: 10.1016/s0140-6736(15)00548-6.

105. Räber L, Yamaji K, Kelbæk H, et al. Five-year clinical outcomes and intracoronary imaging findings of the COMFORTABLE AMI trial: randomized comparison of biodegradable polymer-based biolimus-eluting stents with bare-metal stents in patients with acute ST-segment elevation myocardial infarction. Eur Heart J. 2019;40:1909-19. doi: 10.1093/eurheartj/ehz074.

106. Jolly SS, James S, Dzavik V, et al. Thrombus aspiration in ST-segment-elevation myocardial infarction: an individual patient meta-analysis: Thrombectomy trialists collaboration. Circulation. 2017;135:143-52.

107. Li Kam Wa ME, De Silva K, Collet C, Perera D. FLOWER-MI and the root of the problem with non-culprit revascularisation. Open Heart. 2021;8(2):e001763. doi: 10.1136/openhrt-2021-001763.

108. Cuculi F, De Maria GL, Meier P, et al. Impact of microvascular obstruction on the assessment of coronary flow reserve, index of microcirculatory resistance, and fractional flow reserve after ST-segment elevation myocardial infarction. J Am Coll Cardiol. 2014;64:1894-904. doi: 10.1016/j.jacc.2014.07.987.

109. De Bruyne B, Pijls NH, Bartunek J, et al. Fractional flow reserve in patients with prior myocardial infarction. Circulation. 2001;104:157-62. doi: 10.1161/01.cir.104.2.157.

110. Bainey KR, Engstrøm T, Smits PC, et al. Complete vs culprit-lesion-only revascularization for ST-segment elevation myocardial infarction: a systematic review and meta-analysis. JAMA Cardiol. 2020;5:881-8. doi: 10.1001/jamacardio.2020.1251.

111. Sels JW, Tonino PA, Siebert U, et al. Fractional flow reserve in unstable angina and nonST-segment elevation myocardial infarction experience from the FAME (Fractional flow reserve versus Angiography for Multivessel Evaluation) study. JACC Cardiovasc Interv. 2011;4:1183-9. doi: 10.1016/j.jcin.2011.08.008.

112. Wald DS, Hadyanto S, Bestwick JP. Should fractional flow reserve follow angiographic visual inspection to guide preventive percutaneous coronary intervention in ST-elevation myocardial infarction? Eur Heart J Qual Care Clin Outcomes. 2020;6:186-92. doi: 10.1093/ehjqcco/qcaa012.

113. Gallone G, Angelini F, Fortuni F, et al. Angiography- vs. physiology-guided complete revascularization in patients with ST-elevation myocardial infarction and multivessel disease: who is the better gatekeeper in this setting? A meta-analysis of randomized controlled trials. Eur Heart J Qual Care Clin Outcomes. 2020;6:199-200. doi: 10.1093/ehjqcco/qcaa007.

114. Lee JM, Kim HK, Park KH, et al. Fractional flow reserve versus angiography-guided strategy in acute myocardial infarction with multivessel disease: a randomized trial. Eur Heart J. 2023;44:473-84. doi: 10.1093/eurheartj/ehac763.

115. Wald DS, Morris JK, Wald NJ, et al., & PRAMI Investigators. Randomized trial of preventive angioplasty in myocardial infarction. The New England journal of medicine. 2013;369(12):1115-23. doi: 10.1056/NEJMoa1305520.

116. Engstrøm T, Kelbæk H, Helqvist S, et al. Complete revascularisation versus treatment of the culprit lesion only in patients with ST-segment elevation myocardial infarction and multivessel disease (DANAMI-3-PRIMULTI): an open-label, randomised controlled trial. Lancet. 2015;386:665-71. doi: 10.1016/s0140-6736(15)60648-1.

117. Smits PC, Abdel-Wahab M, Neumann FJ, et al. Fractional flow reserve-guided multivessel angioplasty in myocardial infarction. N Engl J Med. 2017;376:1234-44. doi: 10.1056/NEJMoa1701067.

118. Mehta SR, Wang J, Wood DA, et al. COMPLETE Trial Investigators. Complete Revascularization vs Culprit Lesion-Only Percutaneous Coronary Intervention for Angina-Related Quality of Life in Patients With ST-Segment Elevation Myocardial Infarction: Results From the COMPLETE Randomized Clinical Trial. JAMA cardiology. 2022;7(11):1091-9. doi: 10.1001/jamacardio.2022.3032.

119. Gershlick AH, Khan JN, Kelly DJ, et al. Randomized trial of complete versus lesion-only revascularization in patients undergoing primary percutaneous coronary intervention for STEMI and multivessel disease: the CvLPRIT trial. J Am Coll Cardiol. 2015;65:963-72. doi: 10.1016/j.jacc.2014.12.038.

120. COMPARE-ACUTE Chin CT, L'Allier P, Neumann FJ, et al. The Compare-Acute trial of fractional flow reserve-guided multivessel angioplasty in myocardial infarction. EuroIntervention: journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology. 2017;13(5):e613-e616. doi: 10.4244/EIJV13I5A96.

121. Diletti R, den Dekker WK, Bennett J, et al. BIOVASC Investigators. Immediate versus staged complete revascularisation in patients presenting with acute coronary syndrome and multivessel coronary disease (BIOVASC): a prospective, open-label, non-inferiority, randomised trial. Lancet (London, England). 2023;401(10383):1172-82. doi: 10.1016/S0140-6736(23)00351-3.

122. Biscaglia S, Guiducci V, Escaned J, et al., FIRE Trial Investigators. Complete or CulpritOnly PCI in Older Patients with Myocardial Infarction. N Engl J Med. 2023;389(10):889-98. doi: 10.1056/NEJMoa2300468.

123. Podmetil PS, Burak TYa, Kachanov IN, Kaledin AL. Augmentation of hyperemia by the introduction of an additional hyperemic agent at boundary values of the fractional reserve of blood flow. Endovascular surgery. 2019;6(1):13-9. (In Russ.) doi: 10.24183/2409-4080-2019-6-1-13-19.

124. De Bruyne B, Pijls NH, Barbato E, et al. Intracoronary and intravenous adenosine 5'-triphosphate, adenosine, papaverine, and contrast medium to assess fractional flow reserve in humans. Circulation. 2003;107(14):1877-83. doi: 10.1161/01.CIR.0000061950.24940.88.

125. Van der Voort PH, van Hagen E, Hendrix G, et al. Comparison of intravenous adenosine to intracoronary papaverine for calculation of pressure-177 derived fractional flow reserve. Cathet. Cardiovasc. Diagn. 1996;39(2):120-5. doi: 10.1002/(SICI)1097-0304(199610)39:3.0.CO;2-H19.

126. Nishi T, Kitahara H, Iwata Y, et al. Efficacy of combined administration of intracoronary papaverine plus intravenous adenosine 5'-triphosphate in assessment of fractional flow reserve. J. Cardiol. 2016;68(6):512-6. doi: 10.1016/j.jjcc.2015.12.005.

127. Puymirat E, Cayla G, Simon T, et al. Multivessel PCI guided by FFR or angiography for myocardial infarction. N Engl J Med. 2021;385:297-308. doi: 10.1056/NEJMoa2104650.

128. Darmoch F, Alraies MC, Al-Khadra Y, et al. Intravascular ultrasound imaging-guided versus coronary angiography-guided percutaneous coronary intervention: a systematic review and meta-analysis. J Am Heart Assoc. 2020;9:e013678. doi: 10.1161/jaha.119.013678.

129. Hong SJ, Kim BK, Shin DH, et al. Effect of intravascular ultrasound-guided vs angiography-guided everolimus-eluting stent implantation: the IVUS-XPL randomized clinical trial. JAMA. 2015;314:2155-63. doi: 10.1001/jama.2015.15454.

130. Zhang J, Gao X, Kan J, et al. Intravascular ultrasound versus angiography-guided drugeluting stent implantation: the ULTIMATE trial. J Am Coll Cardiol. 2018;72:3126-37. doi: 10.1016/j.jacc.2018.09.013.

131. Gao XF, Ge Z, Kong XQ, et al. 3-Year outcomes of the ULTIMATE trial comparing intravascular ultrasound versus angiography-guided drug-eluting stent implantation. JACC Cardiovasc Interv. 2021;14:247-57. doi: 10.1016/j.jcin.2020.10.001.

132. Johnson TW, Räber L, di Mario C, et al. Clinical use of intracoronary imaging. Part 2: acute coronary syndromes, ambiguous coronary angiography findings, and guiding interventional decision-making: an expert consensus document of the European Association of Percutaneous Cardiovascular Interventions. Eur Heart J. 2019;40:2566-84. doi: 10.1093/eurheartj/ehz332.

133. Jia H, Dai J, He L, et al. EROSION III: a multicenter RCT of OCT-guided reperfusion in STEMI with early infarct artery patency. JACC Cardiovasc Interv. 2022;15:846-56. doi: 10.1016/j.jcin.2022.01.298.

134. Meneveau N, Souteyrand G, Motreff P, et al. Optical coherence tomography to optimize results of percutaneous coronary intervention in patients with non-ST-elevation acute coronary syndrome: results of the multicenter, randomized DOCTORS study (Does Optical Coherence Tomography Optimize Results of Stenting). Circulation. 2016;134:906-17. doi: 10.1161/circulationaha.116.024393.

135. Kala P, Cervinka P, Jakl M, et al. OCT guidance during stent implantation in primary PCI: a randomized multicenter study with nine months of optical coherence tomography follow-up. Int J Cardiol. 2018;250:98-103. doi: 10.1016/j.ijcard.2017.10.059.

136. Kim Y, Bae S, Johnson TW, et al.; KAMIR‐NIH (Korea Acute Myocardial Infarction Registry‐National Institutes of Health) Investigators [Link]. Role of Intravascular UltrasoundGuided Percutaneous Coronary Intervention in Optimizing Outcomes in Acute Myocardial Infarction. J Am Heart Assoc. 2022;11(5):e023481. doi: 10.1161/JAHA.121.023481.

137. Morrison LJ, Verbeek PR, McDonald AC, et al. Mortality and prehospital thrombolysis for acute myocardial infarction: a meta-analysis. J Am Med Assoc. 2000;283:2686-92.

138. McCaul M, Lourens A, Kredo T. Pre-hospital versus in-hospital thrombolysis for ST-elevation myocardial infarction Cochrane Database Syst Rev. 2014;9. Art. No.: CD010191. doi: 10.1002/14651858.CD010191.pub2.

139. Bonnefoy E, Steg PG, Boutitie F, et al. Comparison of primary angioplasty and prehospital fibrinolysis in acute myocardial infarction (CAPTIM) trial: a 5-year follow-up. Eur Heart J. 2009;30(13):1598-606.

140. Gershlick AH, Stephens-Lloyd A, Hughes S, et al., REACT Trial Investigators. Rescue angioplasty after failed thrombolytic therapy for acute myocardial infarction. N Engl J Med. 2005;353(26):2758-68.

141. Borgia F, Goodman SG, Halvorsen S, et al. Early routine percutaneous coronary intervention after fibrinolysis vs. standard therapy in ST-segment elevation myocardial infarction: a meta-analysis. Eur Heart J. 2010;31(17):2156-69.

142. D'Souza SP, Mamas MA, Fraser DG, Fath-Ordoubadi F. Routine early coronary angioplasty versus ischaemia-guided angioplasty after thrombolysis in acute ST-elevation myocardial infarction: a meta-analysis. Eur Heart J. 2011;32(8):972-82.

143. Cantor WJ, Fitchett D, Borgundvaag B, et al.; TRANSFER-AMI Trial Investigators. Routine early angioplasty after fibrinolysis for acute myocardial infarction. N Engl J Med. 2009;360(26):2705-18.

144. O'Gara PT, Kushner FG, Ascheim DD, et al.; American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;127(4):e362-425. doi: 10.1161/CIR.0b013e3182742cf6.

145. Steg PG, James SK, Atar D, et al. Task Force on the management of ST-segment elevation acute myocardial infarction of the European Society of Cardiology (ESC); ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J. 2012;33(20):2569-619. doi: 10.1093/eurheartj/ehs215.

146. GUSTO Investigators. An international randomized trial comparing four thrombolytic strategies for acute myocardial infarction. The GUSTO investigators. N Engl J Med. 1993;329:673-82.

147. Van de Werf F, Ristić AD, Averkov OV, et al. Half-Dose Tenecteplase or Primary Percutaneous Coronary Intervention in Older Patients With ST-Segment—Elevation Myocardial Infarction in STREAM-2: A Randomized, Open-Label Trial. Circulation. 2023;148. doi: 10.1161/CIRCULATIONAHA.123.064521.

148. Ellis SG, da Silva ER, Heyndrickx G, et al.; RЕSCUE Investigators. Randomized comparison of rescue angioplasty with conservative management of patients with early failure of thrombolysis for acute anterior myocardial infarction. Circulation. 1994;90(5):2280-4.

149. Sutton AGC, Campbell PG, Graham R, et al. A randomized trial of rescue angioplasty versus a conservative approach for failed fibrinolysis in ST-segment elevation myocardial infarction: the Middlesbrough Early Revascularization to Limit INfarction (MERLIN) trial. J Am Coll Cardiol. 2004;44:287-96.

150. Wijeysundera HC, Vijayaraghavan R, Nallamothu BK, et al. Rescue angioplasty or repeat fibrinolysis after failed fibrinolytic therapy for ST-segment myocardial infarction: a metaanalysis of randomized trials. J Am Coll Cardiol. 2007;49:422-30.

151. Collet JP, Montalesot G, Le May M, et al. Percutaneous coronary intervention after fibrinolysis: a multiple meta-analyses approach according to the type of strategy. J Am Coll Cardiol. 2006;48:1326-35.

152. Appleton DL, Abbate A, Biondi-Zoccai GGL. Late percutaneous coronary intervention for the totally occluded infarct-related artery: a meta-analysis of the effects on cardiac function and remodeling. Catheter Cardiovasc Interv. 2008;71:772-81.

153. Ibanez B, James S, Agewall S, et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the task force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology. Eur Heart J. 2018;39:119-77.

154. O'Gara PT, Kushner FG, Ascheim DD, et al. 2013 ACCF/aha guideline for the management of ST-elevation myocardial infarction. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. JACC. 2013;61:485-510.

155. Brar SS, Shen AY, Jorgensen MB, et al. Sodium bicarbonate vs sodium chloride for the prevention of contrast medium-induced nephropathy in patients undergoing coronary angiography: a randomized trial. JAMA. 2008;300:1038-46. doi: 10.1001/jama.300.9.1038.

156. Brar SS, Aharonian V, Mansukhani P, et al. Haemodynamic-guided fluid administration for the prevention of contrast-induced acute kidney injury: the POSEIDON randomized controlled trial. Lancet. 2014;383:1814-23. doi: 10.1016/s0140-6736(14)60689-9.

157. Giacoppo D, Gargiulo G, Buccheri S, et al. Preventive strategies for contrast-induced acute kidney injury in patients undergoing percutaneous coronary procedures: evidence from a hierarchical Bayesian network meta-analysis of 124 trials and 28240 patients. Circ Cardiovasc Interv. 2017;10:e004383. doi: 10.1161/circinterventions.116.004383.

158. Nijssen EC, Rennenberg RJ, Nelemans PJ, et al. Prophylactic hydration to protect renal function from intravascular iodinated contrast material in patients at high risk of contrast-induced nephropathy (AMACING): a prospective, randomised, phase 3, controlled, open-label, non-inferiority trial. Lancet. 2017;389:1312-322. doi: 10.1016/s0140-6736(17)30057-0.

159. Aspelin P, Aubry P, Fransson SG, et al. Nephrotoxic effects in high-risk patients undergoing angiography. N Engl J Med. 2003;348:491-9.

160. Jo SH, Youn TJ, Koo BK, et al. Renal toxicity evaluation and comparison between Visipaque (iodixanol) and Hexabrix (ioxaglate) in patients with renal insufficiency undergoing coronary angiography: the RECOVER study: a randomized controlled trial. J Am Coll Cardiol. 2006;48:924-30.

161. Solomon RJ, Natarajan MK, Doucet S, et al. Cardiac Angiography in Renally Impaired Patients (CARE) study: a randomized double-blind trial of contrast-induced nephropathy in patients with chronic kidney disease. Circulation. 2007;115:3189-96.

162. Maioli M, Toso A, Leoncini M, et al. Effects of hydration in contrast-induced acute kidney injury after primary angioplasty: a randomized, controlled trial. Circ Cardiovasc Interv. 2011;4:456-62.

163. Tweet MS, Eleid MF, Best PJM, et al. Spontaneous coronary artery dissection: revascularization versus conservative therapy. Circ Cardiovasc Interv. 2014;7:777-86. doi: 10.1161/circinterventions.114.001659.

164. Hayes SN, Tweet MS, Adlam D, et al. Spontaneous coronary artery dissection: JACC Stateof-the-Art Review. J Am Coll Cardiol. 2020;76:961-84. doi: 10.1016/j.jacc.2020.05.084.

165. Adlam D, Alfonso F, Maas A, Vrints C. European Society of Cardiology, Acute Cardiovascular Care Association, SCAD study group: a position paper on spontaneous coronary artery dissection. Eur Heart J. 2018;39:3353-68. doi: 10.1093/eurheartj/ehy080.

166. Jackson R, Al-Hussaini A, Joseph S, et al. Spontaneous coronary artery dissection: pathophysiological insights from optical coherence tomography. JACC Cardiovasc Imaging. 2019;12:2475-88. doi: 10.1016/j.jcmg.2019.01.015.

167. Hayes SN, Kim ESH, Saw J, et al. Spontaneous coronary artery dissection: current state of the science: a scientific statement from the American Heart Association. Circulation. 2018;137:e523-e557. doi: 10.1161/cir.0000000000000564.

168. Alfonso F, de la Torre Hernández JM, Ibáñez B, et al. Rationale and design of the BA-SCAD (Beta-blockers and Antiplatelet agents in patients with Spontaneous Coronary Artery Dissection) randomized clinical trial. Rev Esp Cardiol (Engl Ed). 2022;75: 515-22. doi: 10.1016/j.rec.2021.08.003.

169. Tweet MS, Eleid MF, Best PJM, et al. Spontaneous coronary artery dissection: revascularization versus conservative therapy. Circ Cardiovasc Interv. 2014;7:777-86. doi: 10.1161/circinterventions.114.001659.

170. Hayes SN, Tweet MS, Adlam D, et al. Spontaneous coronary artery dissection: JACC Stateof-the-Art Review. J Am Coll Cardiol. 2020;76:961-84. doi: 10.1016/j.jacc.2020.05.084.

171. Corrigendum to: 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J. 2019;40(37):3096. doi:10.1093/eurheartj/ehz507. Erratum for: Eur Heart J. 2019;40(2):87-165.

172. Thielmann M, Wendt D, Slottosch I, et al. Coronary artery bypass graft surgery in patients with acute coronary syndromes after primary percutaneous coronary intervention: a current report from the north-Rhine Westphalia surgical myocardial infarction registry. J Am Heart Assoc. 2021;10:e021182. doi: 10.1161/jaha.121.021182.

173. Hochman JS, Sleeper LA, Webb JG, et al. Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK Investigators. Should We Emergently Revascularize Occluded Coronaries for Cardiogenic Shock. N Engl J Med. 1999;341(9):625-34. doi: 10.1056/NEJM199908263410901.

174. Thiele H, Akin I, Sandri M, et al.; on behalf of the CULPRIT‐SHOCK Investigators. PCI strategies in patients with acute myocardial infarction and cardiogenic shock. N Engl J Med. 2017;377:2419-32.

175. Ellis SG, Tendera M, de Belder MA, et al. Facilitated PCI in patients with ST-elevation myocardial infarction. N Engl J Med. 2008;358:2205-17.

176. Thiele H, Eitel I, Meinberg C, et al. Randomized comparison of pre-hospital-initiated facilitated percutaneous coronary intervention versus primary percutaneous coronary intervention in acute myocardial infarction very early after symptom onset: the LIPSIASTEMI trial (Leipzig immediate prehospital facilitated angioplasty in ST-segment myocardial infarction) JACC Cardiovasc Interv. 2011;4:605-14.

177. Thiele H, Akin I, Sandri M, et al.; for the CULPRIT-SHOCK Investigators. One-Year Outcomes after PCI Strategies in Cardiogenic Shock. N Engl J Med. 2018;379(18):1699-710. doi: 10.1056/NEJMoa1808788.

178. Farhan S, Vogel B, Monta lescot G, et al. Association of Culprit Lesion Location With Outcomes of Culprit-Lesion-Only vs Immediate Multivessel Percutaneous Coronary Intervention in Cardiogenic Shock: A Post Hoc Analysis of a Randomized Clinical Trial. JAMA Cardiol. 2020;5(12):1329-37. doi: 10.1001/jamacardio.2020.3377.

179. Lemkes JS, Janssens GN, van der Hoeven NW, et al. Coronary angiography after cardiac arrest without ST segment elevation: one-year outcomes of the COACT randomized clinical trial. JAMA Cardiol. 2020;5:1358-65. doi: 10.1001/jamacardio.2020.3670.

180. Kunadian V, Chieffo A, Camici PG, et al. An EAPCI expert consensus document on ischaemia with non-obstructive coronary arteries in collaboration with European Society of Cardiology Working Group on Coronary Pathophysiology & Microcirculation Endorsed by Coronary Vasomotor Disorders International Study Group. Eur Heart J. 2020;41: 3504-20. doi: 10.1093/eurheartj/ehaa503.

181. Pathik B, Raman B, Mohd Amin NH, et al. Troponin-positive chest pain with unobstructed coronary arteries: incremental diag- nostic value of cardiovascular magnetic resonance imaging. Eur Heart J Cardiovasc Imaging. 2016;17:1146-52. doi: 10.1093/ehjci/jev289.

182. Reynolds HR, Maehara A, Kwong RY, et al. Coronary optical coherence tomography and cardiac magnetic resonance imaging to determine underlying causes of myocardial infarction with nonobstructive coronary arteries in women. Circulation. 2021;143:624-40. doi: 10.1161/circulationaha.120.052008.

183. Bonin M, Mewton N, Roubille F, et al.; for CIRCUS Study Investigators. Effect and safety of morphine use in acute anterior ST-segment elevation myocardial infarction. J Am Heart Assoc. 2018;7(4). pii: e006833. doi: 10.1161/JAHA.117.006833.

184. Lapostolle F, Van't Hof AW, Hamm CW, et al.; for ATLANTIC Investigators. Morphine and ticagrelor interaction in primary percutaneous coronary intervention in ST-segment elevation myocardial infarction: ATLANTIC-Morphine. Am J Cardiovasc Drugs. 2019;19(2):173-83. doi: 10.1007/s40256-018-0305-0.

185. Thomas MR, Morton AC, Hossain R, et al. Morphine delays the onset of action of prasugrel in patients with prior history of ST-elevation myocardial infarction. Thromb Haemost. 2016;116(1):96-102. doi: 10.1160/TH16-02-0102.

186. Hobl EL, Stimpfl T, Ebner J, et al. Morphine decreases clopidogrel concentrations and effects: a randomized, double-blind, placebo-controlled trial. J Am Coll Cardiol. 2014;63(7):630-5.

187. Baumeister H, Hutter N, Bengel J. Psychological and pharmacological interventions for depression in patients with coronary artery disease. Cochrane Database Syst Rev. 2011;2011:Cd008012. doi: 10.1002/14651858.CD008012.pub3.

188. Richards SH, Anderson L, Jenkinson CE, et al. Psychological interventions for coronary heart disease: cochrane systematic review and meta-analysis. Eur J Prev Cardiol. 2018;25:247-59. doi: 10.1177/2047487317739978.

189. Hofmann R, James SK, Jernberg T, et al.; DETO2X-SWEDEHEART Investigators. Oxygen therapy in suspected acute myocardial infarction. N Engl J Med. 2017;377:1240-9.

190. Stub D, Smith K, Bernard S, et al.; AVOID Investigators. Air versus oxygen in ST-segment-elevation myocardial infarction. Circulation. 2015;131(24):2143-50. doi: 10.1161/CIRCULATIONAHA.114.014494.

191. Antithrombotic Trialists' Collaboration. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ. 2002;324(7329):71-86.

192. Antithrombotic Trialists' (ATT) Collaboration. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet. 2009;373:1849-60. doi: 10.1016/s0140-6736(09)60503-1.

193. Chen ZM, Jiang LX, Chen YP, et al.; COMMIT (ClOpidogrel and Metoprolol in Myocardial Infarction Trial) Collaborative Group. Addition of clopidogrel to aspirin in 45,852 patients with acute myocardial infarction: randomised placebo-controlled trial. Lancet. 2005;366(9497):1607-21.

194. Sabatine MS, Cannon CP, Gibson CM, et al.; CLARITY-TIMI 28 Investigators. Addition of clopidogrel to aspirin and fibrinolytic therapy for myocardial infarction with ST-segment elevation. N Engl J Med. 2005;352(12):1179-89.

195. Berwanger O, Lopes RD, Moia DDF, et al. Ticagrelor versus clopidogrel in patients with STEMI treated with fibrinolysis: TREAT trial. J Am Coll Cardiol. 2019;73:2819-28. doi: 10.1016/j.jacc.2019.03.011.

196. James SK, Roe MT, Cannon CP, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes intended for non-invasive management: substudy from prospective randomised PLATelet inhibition and patient Outcomes (PLATO) trial. BMJ. 2011;342: d3527. doi: 10.1136/bmj.d3527.

197. Montalescot G, Wiviott SD, Braunwald E, et al. Prasugrel compared with clopidogrel in patients undergoing percutaneous coronary intervention for ST-elevation myocardial infarction (TRITON-TIMI 38): double-blind, randomised controlled trial. Lancet. 2009;373:723-31. doi: 10.1016/S0140-6736(09)60441-4.

198. Schüpke S, Neumann FJ, Menichelli M, et al. Ticagrelor or prasugrel in patients with acute coronary syndromes. N Engl J Med. 2019;381:1524-34. doi: 10.1056/NEJMoa1908973.

199. Coughlan JJ, Aytekin A, Lahu S, et al. Ticagrelor or prasugrel for patients with acute coronary syndrome treated with percutaneous coronary intervention: a prespecified subgroup analysis of a randomized clinical trial. JAMA Cardiol. 2021;6:1121-9. doi: 10.1001/jamacardio.2021.2228.

200. Khan SU, Khan MZ, Asad ZUA, et al. Efficacy and safety of low dose rivaroxaban in patients with coronary heart disease: a systematic review and meta-analysis. J Thromb Thrombolysis. 2020;50(4):913-20. doi: 10.1007/s11239-020-02114-7.

201. Sanchez PL, Gimeno F, Ancillo P, et al. Role of the paclitaxel-eluting stent and tirofiban in patients with ST-elevation myocardial infarction undergoing postfibrinolysis angioplasty: the GRACIA-3 randomized clinical trial. Circ Cardiovasc Interv. 2010;3(4):297-307.

202. Gurm HS, Lincoff AM, Lee D, et al.; GUSTO V Trial. Outcome of acute ST-segment elevation myocardial infarction in diabetics treated with fibrinolytic or combination reduced fibrinolytic therapy and platelet glycoprotein IIb/IIIa inhibition: lessons from the GUSTO V trial. J Am Coll Cardiol. 2004;43(4):542-8.

203. Bhatt DL, Cryer BL, Contant CF, et al. Clopidogrel with or without omeprazole in coronary artery disease. N Engl J Med. 2010;363:1909-17. doi: 10.1056/NEJMoa1007964.

204. Gargiulo G, Costa F, Ariotti S, et al. Impact of proton pump inhibitors on clinical outcomes in patients treated with a 6- or 24-month dual-antiplatelet therapy duration: insights from the PROlonging Dual-antiplatelet treatment after Grading stent-induced Intimal hyperplasia studY trial. Am Heart J. 2016;174:95-102. doi: 10.1016/j.ahj.2016.01.015.

205. Eikelboom JW, Anand SS, Malmberg K, et al. Unfractionated heparin and low-molecularweight heparin in acute coronary syndrome without ST elevation: a meta-analysis. Lancet. 2000;355:1936-42. doi: 10.1016/s0140-6736(00)02324-2.

206. Eikelboom JW, Quinlan DJ, Mehta SR, et al. Unfractionated and low-molecular-weight heparin as adjuncts to thrombolysis in aspirin-treated patients with ST-elevation acute myocardial infarction: a meta-analysis of the randomized trials. Circulation. 2005;112:3855.

207. Navarese EP, De Luca G, Castriota F, et al. Low-molecular-weight heparins vs. unfractionated heparin in the setting of percutaneous coronary intervention for ST-elevation myocardial infarction: a meta-analysis. J Thromb Haemost. 2011;9:1902.

208. Silvain J, Beygui F, Barthélémy O, et al. Efficacy and safety of enoxaparin versus unfractionated heparin during percutaneous coronary intervention: systematic review and meta-analysis. BMJ. 2012;344:e553.

209. White H; Hirulog and Early Reperfusion or Occlusion (HERO)-2 Trial Investigators. Thrombin-specific anticoagulation with bivalirudin versus heparin in patients receiving fibrinolytic therapy for acute myocardial infarction: the HERO-2 randomised trial. Lancet. 2001;358(9296):1855-63. doi: 10.1016/s0140-6736(01)06887-8.

210. Antman EM, Louwerenburg HW, Baars HF, et al. Enoxaparin as adjunctive antithrombin therapy for ST-elevation myocardial infarction: results of the ENTIRE-Thrombolysis in Myocardial Infarction (TIMI) 23 Trial. Circulation. 2002;105:1642-9.

211. Killip T, Kimball JT. Treatment of myocardial infarction in a coronary care unit. Am. J. Cardiol. 1967;20(4):457-64.

212. Giraldez RR, Nicolau JC, Corbalan R, et al. Enoxaparin is superior to unfractionated heparin in patients with ST elevation myocardial infarction undergoing fibrinolysis regardless of the choice of lytic: an ExTRACT-TIMI 25 analysis. Eur Heart J. 2007;28(13):1566-73.

213. White HD, Braunwald E, Murphy SA, et al. Enoxaparin vs. unfractionated heparin with fibrinolysis for ST-elevation myocardial infarction in elderly and younger patients: results from ExTRACT-TIMI 25. Eur Heart J. 2007;28:1066-71. doi: 10.1093/eurheartj/ehm081.

214. ASSENT-3 Investigators. Efficacy and safety of tenecteplase in combination with enoxaparin, abciximab, or unfractionated heparin: the ASSENT-3 randomised trial in acute myocardial infarction. Lancet. 2001;358:605-13. doi: 10.1016/s0140-6736(01)05775-0.

215. Wallentin L, Goldstein P, Armstrong PW, et al. Efficacy and safety of Tenecteplase in combination with the low-molecular-weight heparin enoxaparin or unfractionated heparin in the prehospital setting: the Assessment of the Safety and Efficacy of a New Thrombolytic Regimen (ASSENT)-3 PLUS randomized trial in acute myocardial infarction. Circulation. 2003;108:135-42. doi: 10.1161/01.Cir.0000081659.72985.A8.

216. Ross AM, Molhoek P, Lundergan C, et al. Randomized comparison of enoxaparin, a low-molecular-weight heparin, with unfractionated heparin adjunctive to recombinant tissue plasminogen activator thrombolysis and aspirin: second trial of Heparin and Aspirin Reperfusion Therapy (HART II). Circulation. 2001;104:648-52. doi: 10.1161/hc3101.093866.

217. Tatu-Chiţoiu G, Oprişan M, Cismara O, et al. Streptokinase and enoxaparin in the prehospital management of the ST-segment elevation acute myocardial infarction. Rom J Intern Med. 2002;40(1-4):11-25.

218. Giraldez RR, Wiviott SD, Nicolau JC, et al. Streptokinase and enoxaparin as an alternative to fibrin-specific lytic-based regimens: an ExTRACT-TIMI 25 analysis. Drugs. 2009;69(11):1433-43. doi: 10.2165/00003495-200969110-00003.

219. Yusuf S, Mehta SR, Chrolavicius S, et al. Effects of fondaparinux on mortality and reinfarction in patients with acute ST-segment elevation myocardial infarction: the OASIS-6 randomized trial. JAMA. 2006;295:1519-30. doi: 10.1001/jama.295.13.joc60038.

220. Montalesot G, Van't Hof AW, Lapostolle F, et al.; on behalf of the ATLANTIC Investigators. Prehospital Ticagrelor in ST-Segment Elevation Myocardial Infarction. N Engl J Med. 2014;371:1016-27.

221. Wallentin L, Becker RC, Budaj A, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2009;361:1045-57. doi: 10.1056/NEJMoa0904327.

222. Wiviott SD, Braunwald E, McCabe CH, et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med. 2007;357:2001-15. doi: 10.1056/NEJMoa0706482.

223. Mehta SR, Yusuf S, Peters RJ, et al. Effects of pretreatment with clopidogrel and aspirin followed by long-term therapy in patients undergoing percutaneous coronary intervention: the PCI-CURE study. Lancet. 2001;358:527-33. doi: 10.1016/s0140-6736(01)05701-4.

224. Mehta SR, Tanguay JF, Eikelboom JW, et al.; for CURRENT-OASIS Trial Investigators. Double-dose versus standard-dose clopidogrel and high-dose versus low-dose aspirin in individuals undergoing percutaneous coronary intervention for acute coronary syndromes (CURRENT-OASIS 7): a randomised factorial trial. Lancet. 2010;376:1233-43.

225. Husted S, James S, Becker RC, et al. Ticagrelor versus clopidogrel in elderly patients with acute coronary syndromes: a substudy from the prospective randomized PLATelet inhibition and patient Outcomes (PLATO) trial. Circ Cardiovasc Qual Outcomes. 2012; 5:680-8. doi: 10.1161/circoutcomes.111.964395.

226. Gimbel M, Qaderdan K, Willemsen L, et al. Clopidogrel versus ticagrelor or prasugrel in patients aged 70 years or older with non-ST-elevation acute coronary syndrome (POPular AGE): the randomised, openlabel, non-inferiority trial. Lancet. 2020;395:1374-81. doi: 10.1016/s0140-6736(20)30325-1.

227. Boersma E, Harrington RA, Moliterno DJ, et al. Platelet glycoprotein IIb/IIIa inhibitors in acute coronary syndromes: a meta-analysis of all major randomised clinical trials. Lancet. 2002;359:189-98. doi: 10.1016/s0140-6736(02)07442-1.

228. Long M, Ye Z, Zheng J, et al. Dual anti-platelet therapy following percutaneous coronary intervention in a population of patients with thrombocytopenia at baseline: a metaanalysis. BMC Pharmacol Toxicol. 2020;21:31. doi: 10.1186/s40360-020-00409-2.

229. Martin JL, Fry ETA, Sanderink G-JCM, et al. Reliable anticoagulation with enoxaparin in patients undergoing percutaneous coronary intervention: The pharmacokinetics of enoxaparin in PCI (PEPCI) study. Cardiovasc Interv. 2004;61:163-70. doi: 10.1002/ccd.10726.

230. Capodanno D, Gargiulo G, Capranzano P, et al. Bivalirudin versus heparin with or without glycoprotein IIb/IIIa inhibitors in patients with STEMI undergoing primary PCI: An updated meta-analysis of 10,350 patients from five randomized clinical trials. Eur Heart J Acute Cardiovasc Care. 2016;5:253-62.

231. Erlinge D, Omerovic E, Fröbert O, et al. Bivalirudin versus heparin monotherapy in myocardial infarction. N Engl J Med. 2017;377:1132-42.

232. Valgimigli M, Frigoli E, Leonardi S, et al.; MATRIX Investigators. Bivalirudin or unfractionated heparin in acute coronary syndromes. N Engl J Med. 2015;373:997-1009.

233. Zhang S, Gao W, Li H, et al. Efficacy and safety of bivalirudin versus heparin in patients undergoing percutaneous coronary intervention: A meta-analysis of randomized controlled trials. Int J Cardiol. 2016;209:87-95. doi: 10.1016/j.ijcard.2016.01.206.

234. Nuhrenberg TG, Hochholzer W, Mashayekhi K, et al. Efficacy and safety of bivalirudin for percutaneous coronary intervention in acute coronary syndromes: A meta-analysis of randomized-controlled trials. Clin Res Cardiol. 2018;107:807-15.

235. Kuno T, Watanabe A, Shoji S, et al. Short-Term DAPT and DAPT De-Escalation Strategies for Patients With Acute Coronary Syndromes: A Systematic Review and Network Meta-Analysis. Circ Cardiovasc Interv. 2023;16(9):e013242. doi: 10.1161/CIRCINTERVENTIONS.123.013242.

236. Wang W, Huang Q, Pan D, et al. The optimal duration of triple antithrombotic therapy in patients with atrial fibrillation and acute coronary syndrome or undergoing percutaneous coronary intervention: A network meta-analysis of randomized clinical trials. Int J Cardiol. 2022;357:33-8. doi: 10.1016/j.ijcard.2022.03.047.

237. Kuno T, Ueyama H, Takagi H, Bangalore S. The risk of stent thrombosis of dual antithrombotic therapy for patients who require oral anticoagulant undergoing percutaneous coronary intervention: insights of a meta-analysis of randomized trials. Scand Cardiovasc J. 2022;56(1):1-3. doi: 10.1080/14017431.2021.2025264.

238. Gupta R, Malik AH, Gupta R, et al. Dual Versus Triple Therapy in Patients with Acute Coronary Syndrome and an Anticoagulation Indication: A Systematic Review with MetaAnalysis and Trial-Sequential Analysis. Cardiol Rev. 2021;29(5):245-52. doi: 10.1097/CRD.0000000000000320.

239. Agarwal N, Mahmoud AN, Mojadidi MK, et al. Dual versus triple antithrombotic therapy in patients undergoing percutaneous coronary intervention-meta-analysis and metaregression. Cardiovasc Revasc Med. 2019;20(12):1134-9. doi: 10.1016/j.carrev.2019.02.022.

240. Zhang J, Wang Z, Sang W, et al. Omission of aspirin in patients taking oral anticoagulation after percutaneous coronary intervention: a systematic review and meta-analysis. Coron Artery Dis. 2019;30(2):109-15. doi: 10.1097/MCA.0000000000000698.

241. Shah R, Khan SA, Khan B, Latham SB. Short-term versus long-term triple antithrombotic therapy for patients with coronary stents and requiring oral anticoagulation: a metaanalysis of randomized clinical trials. Coron Artery Dis. 2019;30(2):116-23. doi: 10.1097/MCA.0000000000000690.

242. Shin D, Mohanty BD, Lee ES. Dual versus triple antithrombotic therapy after percutaneous coronary intervention or acute coronary syndrome in patients with indication for anticoagulation: an updated meta-analysis. Coron Artery Dis. 2018;29(8):670-80. doi: 10.1097/MCA.0000000000000660.

243. Cannon CP, Bhatt DL, Oldgren J, et al.; RE-DUAL Steering Committee PCI and Investigators. Dual antithrombotic therapy with dabigatran after PCI in atrial fibrillation. N Engl J Med. 2017;377:1513-24.

244. Dewilde WJ, Oirbans T, Verheugt FW, et al.; WOEST Study Investigators. Use of clopidogrel with or without aspirin in patients taking oral anticoagulant therapy and undergoing percutaneous coronary intervention: an open-label, randomised, controlled trial. Lancet. 2013;381:1107-15.

245. Gibson CM, Mehran R, Bode C, et al. Prevention of bleeding in patients with atrial fibrillation undergoing PCI. N Engl J Med. 2016;375:2423-34.

246. Lopes RD, Heizer G, Aronson R, et al.; for the AUGUSTUS Investigators. Antithrombotic therapy after acute coronary syndrome or PCI in atrial fibrillation. NEJM. 2019;380: 1509-24.

247. Vranckx P, Valgimigli M, Eckardt L, et al. Edoxaban-based versus vitamin K antagonistbased antithrombotic regimen after successful coronary stenting in patients with atrial fibrillation (ENTRUST-AF PCI): a randomised, open-label, phase 3b trial. Lancet. 2019;394:1335-43. doi: 10.1016/s0140-6736(19)31872-0.

248. Gargiulo G, Goette A, Tijssen J, et al. Safety and efficacy outcomes of double vs. triple antithrombotic therapy in patients with atrial fibrillation following percutaneous coronary intervention: a systematic review and meta-analysis of non-vitamin K antagonist oral anticoagulant-based randomized clinical trials. Eur Heart J. 2019;40:3757-67. doi: 10.1093/eurheartj/ehz732.

249. Patel MR, Mahaffey KW, Garg J, et al.; ROCKET AF Investigators. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011;365(10):883-91. doi:10.1056/NEJMoa1009638.

250. Carter NJ, Plosker GL. Rivaroxaban: a review of its use in the prevention of stroke and systemic embolism in patients with atrial fibrillation. Drugs. 2013;73(7):715-39. doi: 10.1007/s40265-013-0056-9.

251. Ray WA, Chung CP, Murray KT, et al. Association of Oral Anticoagulants and Proton Pump Inhibitor Cotherapy With Hospitalization for Upper Gastrointestinal Tract Bleeding. JAMA. 2018;320:2221-30. doi: 10.1001/jama.2018.17242.

252. Moayyedi P, Eikelboom JW, Bosch J, et al.; COMPASS Investigators. Pantoprazole to Prevent Gastroduodenal Events in Patients Receiving Rivaroxaban and/or Aspirin in a Randomized, Double-Blind, Placebo-Controlled Trial Gastroenterology. 2019; 157(2):403-12. doi: 10.1053/j.gastro.2019.04.041.

253. Lee SR, Kwon S, Choi EK, et al. Proton Pump Inhibitor Co-Therapy in Patients with Atrial Fibrillation Treated with Oral Anticoagulants and a Prior History of Upper Gastrointestinal Tract Bleeding. Cardiovasc Drugs Ther. 2022;36:679-89. doi: 10.1007/s10557-021-07170-6.

254. Ahn HJ, Lee SR, Choi EK, et al. Protective effect of proton-pump inhibitor against gastrointestinal bleeding in patients receiving oral anticoagulants: A systematic review and meta-analysis. Br J Clin Pharmacol. 2022;88:4676-87. doi: 10.1111/bcp.15478.

255. Urban P, Mehran R, Colleran R, et al. Defining high bleeding risk in patients undergoing percutaneous coronary intervention: a consensus document from the Academic Research Consortium for High Bleeding Risk. Eur Heart J. 2019;40:2632-53. doi: 10.1093/eurheartj/ehz372.

256. Palmerini T, Della Riva D, Benedetto U, et al. Three, six or twelve months of dual antiplatelet therapy after drug-eluting stent implantation in patients with or without acute coronary syndromes: an individual patient data pairwise and network meta-analysis of six randomized trials and 11,473 patients. Eur Heart J. 2017;38:1034-43.

257. Hahn J-Y, Song YB, Oh J-H, et al. Effect of P2Y12 inhibitor monotherapy vs dual antiplatelet therapy on cardiovascular events in patients undergoing percutaneous coronary intervention: the SMART-CHOICE randomized clinical trial. JAMA. 2019;321:2428-37. doi: 10.1001/jama.2019.8146.

258. Vranckx P, Valgimigli M, Jüni P, et al. Ticagrelor plus aspirin for 1 month, followed by ticagrelor monotherapy for 23 months vs aspirin plus clopidogrel or ticagrelor for 12 months, followed by aspirin monotherapy for 12 months after implantation of a drug-eluting stent: a multicentre, open-label, randomized superiority trial. Lancet. 2018;392:940-9. doi: 10.1016/s0140-6736(18)31858-0.

259. Mehran R, Baber U, Sharma SK, et al. Ticagrelor with or without aspirin in high-risk patients after PCI. N Engl J Med. 2019;381:2032-42. doi: 10.1056/NEJMoa1908419.

260. Kim BK, Hong SJ, Cho YH, et al. Effect of ticagrelor monotherapy vs ticagrelor with aspirin on major bleeding and cardiovascular events in patients with acute coronary syndrome: the TICO randomized clinical trial. JAMA. 2020;323:2407-16. doi: 10.1001/jama.2020.7580.

261. Giacoppo D, Matsuda Y, Fovino LN, et al. Short dual antiplatelet therapy followed by P2Y12 inhibitor monotherapy vs. prolonged dual antiplatelet therapy after percutaneous coronary intervention with secondgeneration drug-eluting stents: a systematic review and meta-analysis of randomized clinical trials. Eur Heart J. 2021;42:308-19. doi: 10.1093/eurheartj/ehaa739.

262. Valgimigli M, Gragnano F, Branca M, et al. P2Y12 inhibitor monotherapy or dual antiplatelet therapy after coronary revascularisation: individual patient level meta-analysis of randomised controlled trials. BMJ. 2021;373:n1332. doi: 10.1136/bmj.n1332.

263. Smits PC, Frigoli E, Tijssen J, et al. Abbreviated antiplatelet therapy in patients at high bleeding risk with or without oral anticoagulant therapy after coronary stenting: an open-label, randomized, controlled trial. Circulation. 2021;144:1196-211. doi: 10.1161/circulationaha.121.056680.

264. Watanabe H, Morimoto T, Natsuaki M, et al.; STOPDAPT-2 ACS Investigators. Comparison of Clopidogrel Monotherapy After 1 to 2 Months of Dual Antiplatelet Therapy With 12 Months of Dual Antiplatelet Therapy in Patients With Acute Coronary Syndrome: The STOPDAPT-2 ACS Randomized Clinical Trial. JAMA Cardiol. 2022;7(4):407-17. doi: 10.1001/jamacardio.2021.5244.

265. Sibbing D, Aradi D, Jacobshagen C, et al.; on behalf of the TROPICAL-ACS Investigators. Guided de-ЕОКalation of antiplatelet treatment in patients with acute coronary syndrome undergoing percutaneous coronary intervention (TROPICAL-ACS): a randomised, openlabel, multicentre trial. Lancet. 2017;390:1747-57.

266. Cuisset T, Deharo P, Quilici J, et al. Benefit of switching dual antiplatelet therapy after acute coronary syndrome: the TOPIC (timing of platelet inhibition after acute coronary syndrome) randomized study. Eur Heart J. 2017;38:3070-8.

267. Kim CJ, Park MW, Kim MC, et al. Unguided de-escalation from ticagrelor to clopidogrel in stabilised patients with acute myocardial infarction undergoing percutaneous coronary intervention (TALOS-AMI): an investigator-initiated, open-label, multicentre, non-inferiority, randomised trial. Lancet. 2021;398:1305-16. doi: 10.1016/s0140-6736(21)01445-8.

268. Claassens DMF, Vos GJA, Bergmeijer TO, et al. A genotype-guided strategy for oral P2Y12 inhibitors in primary PCI. N Engl J Med. 2019;381:1621-31. doi: 10.1056/NEJMoa1907096.

269. Eikelboom JW, Connolly SJ, Bosch J, et al.; on behalf of the COMPASS Investigators. Rivaroxaban with or without aspirin in stable cardiovascular disease. N Engl J Med. 2017;377:1319-930.

270. Connolly SJ, Eikelboom JW, Bosch J, et al. Rivaroxaban with or without aspirin in patients with stable coronary artery disease: an international, randomised, double-blind, placebocontrolled trial. Lancet. 2018;391:205-18.

271. Mauri L, Kereiakes DJ, Yeh RW, et al. Twelve or 30 months of dual antiplatelet therapy after drug-eluting stents. N Engl J Med. 2014;371:2155-66. doi: 10.1056/NEJMoa1409312.

272. Bonaca MP, Bhatt DL, Steg PG, et al. Ischaemic risk and efficacy of ticagrelor in relation to time from P2Y12 inhibitor withdrawal in patients with prior myocardial infarction: insights from PEGASUS-TIMI 54. Eur Heart J. 2016;37:1133-42. doi: 10.1093/eurheartj/ehv531.

273. Bonaca MP, Bhatt DL, Cohen M, et al. Long-term use of ticagrelor in patients with prior myocardial infarction. N Engl J Med. 2015;372:1791-800. doi: 10.1056/NEJMoa1500857.

274. Chiarito M, Sanz-Sánchez J, Cannata F, et al. Monotherapy with a P2Y(12) inhibitor or aspirin for secondary prevention in patients with established atherosclerosis: a systematic review and meta-analysis. Lancet. 2020;395:1487-95. doi: 10.1016/s0140-6736(20)30315-9.

275. Koo BK, Kang J, Park KW, et al. Aspirin versus clopidogrel for chronic maintenance monotherapy after percutaneous coronary intervention (HOST-EXAM): an investigatorinitiated, prospective, randomised, open-label, multicentre trial. Lancet. 2021;397:2487-96. doi: 10.1016/s0140-6736(21)01063-1.

276. Leonardi S, Franzone A, Piccolo R, et al. Rationale and design of a prospective substudy of clinical endpoint adjudication processes within an investigator-reported randomized controlled trial in patients with coronary artery disease: the GLOBAL LEADERS Adjudication Sub-StudY (GLASSY). BMJ Open. 2019;9(3):e026053. doi: 10.1136/bmjopen-2018-026053.

277. ISSI-3: effects of lisinopril and transdermal glyceryl trinitrate singly and together on 6-week mortality and ventricular function after acute myocardial infarction. Gruppo Italiano per lo STudio della Sopravvivenza nell'infarto Miocardico. Lancet. 1994;343:1115.

278. ISIS-4 (Fourth International Study of Infarct Survival) Collaborative Group. ISIS-4: a randomised factorial trial assessing early oral captopril, oral mononitrate, and intravenous magnesium sulphate in 58,050 patients with suspected acute myocardial infarction. Lancet. 1995;345(8951):669-85.

279. Gruppo Italiano per lo Studio della Sopravvivenza nell'infarto Miocardico. GISSI-3: effects of lisinopril and transdermal glyceryl trinitrate singly and together on 6-week mortality and ventricular function after acute myocardial infarction. Lancet. 1994;343:1115-22.

280. Roberts R. Intravenous Nitroglycerin in Acute Myocardial Infarction. Am J Med. 1983;74(6B):45-52.

281. Charvat J, Kuruvilla T, al Amad H. Beneficial Effect of Intravenous Nitroglycerin in Patients With non-Q Myocardial Infarction. Cardiologia. 1990;35(1):49-54.

282. Ibanez B, Macaya C, Sánchez-Brunete V, et al. Effect of early metoprolol on infarct size in ST-segment-elevation myocardial infarction patients undergoing primary percutaneous coronary intervention: the effect of metoprolol in cardioprotection during an acute myocardial infarction (METOCARD-CNIC) trial. Circulation. 2013;128:1495-503. doi: 10.1161/circulationaha.113.003653.

283. Roolvink V, Ibáñez B, Ottervanger JP, et al. Early intravenous beta-blockers in patients with ST-segment elevation myocardial infarction before primary percutaneous coronary intervention. J Am Coll Cardiol. 2016;67:2705-15. doi: 10.1016/j.jacc.2016.03.522.

284. Pizarro G, Fernández-Friera L, Fuster V, et al. Long-term benefit of early pre-reperfusion metoprolol administration in patients with acute myocardial infarction: results from the METOCARD-CNIC trial (effect of metoprolol in cardioprotection during an acute myocardial infarction). J Am Coll Cardiol. 2014;63:2356-62. doi: 10.1016/j.jacc.2014.03.014.

285. García-Ruiz JM, Fernández-Jiménez R, García-Alvarez A, et al. Impact of the timing of metoprolol administration during STEMI on infarct size and ventricular function. J Am Coll Cardiol. 2016;67:2093-104. doi: 10.1016/j.jacc.2016.02.050.

286. Hoedemaker NP, Roolvink V, de Winter RJ, et al. Early intravenous beta-blockers in patients undergoing primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: a patientpooled meta-analysis of randomized clinical trials. Eur Heart J Acute Cardiovasc Care. 2020;9:469-77. doi: 10.1177/2048872619830609.

287. Sterling LH, Filion KB, Atallah R, et al. Intravenous beta-blockers in ST-segment elevation myocardial infarction: a systematic review and meta-analysis. Int J Cardiol. 2017;228:295-302.

288. Sun B, Wang CY, Chen RR. Clinical Efficacy and Safety of Early Intravenous Administration of Beta-Blockers in Patients Suffering from Acute ST-Segment Elevation Myocardial Infarction Without Heart Failure Undergoing Primary Percutaneous Coronary Intervention: A Study-Level Meta-Analysis of Randomized Clinical Trials. Cardiovasc Drugs Ther. 2023. doi: 10.1007/s10557-023-07448-x.

289. Freemantle N, Cleland J, Young P, et al. Beta blockade after myocardial infarction: systematic review and meta regression analysis. BMJ. 1999;318(7200):1730-7.

290. Watanabe H, Ozasa N, Morimoto T, et al.; CAPITAL-RCT investigators. Long-term use of carvedilol in patients with ST-segment elevation myocardial infarction treated with primary percutaneous coronary intervention. PLoS One. 2018;13(8):e0199347.

291. Bangalore S, Makani H, Radford M, et al. Clinical outcomes with β-blockers for myocardial infarction: a meta-analysis of randomized trials. Am J Med. 2014;127(10):939-53.

292. Huang BT, Huang FY, Zuo ZL, et al. Meta-analysis of relation between oral β-blocker therapy and outcomes in patients with acute myocardial infarction who underwent percutaneous coronary intervention. Am J Cardiol. 2015;115(11):1529-38.

293. Munkhaugen J, Ruddox V, Halvorsen S, et al. Betablocker treatment after acute myocardial infarction in revascularized patients without reduced left ventricular ejection fraction (BETAMI): rationale and design of a prospective, randomized, open, blinded end point study. Am Heart J. 2019;208:37-46.

294. Kristensen AMD, Bovin A, Zwisler AD, et al. Design and rationale of the Danish trial of beta-blocker treatment after myocardial infarction without reduced ejection fraction: study protocol for a randomized controlled trial. Trials. 2020;21:1-11.

295. Rossello X, Raposeiras-Roubin S, Latini R, et al. Rationale and design of the pragmatic clinical trial tREatment with beta-blockers after ayesiand infarction ayesia reduced ejection ayesian (REBOOT). Eur Heart J Cardiovasc Pharmacother. 2022;8(3):291-301.

296. Yndigegn T, Lindahl B, Alfredsson J, et al. Design and rationale of randomized evaluation of decreased usage of beta-blockers after acute myocardial infarction (REDUCE-AMI). Eur Heart J Cardiovasc Pharmacother. 2023;9(2):192-7. doi: 10.1093/ehjcvp/pvac070.

297. Goldberger JJ, Bonow RO, Cuffe M, et al.; OBTAIN Investigators. Effect of beta-blocker dose on survival after acute myocardial infarction. J Am Coll Cardiol. 2015;66(13):1431-41.

298. Andersson C, Shilane D, Go AS, et al. Beta-blocker therapy and cardiac events among patients with newly diagnosed coronary heart disease. J Am Coll Cardiol. 014;64(3): 247-52.

299. Safi S, Sethi NJ, Korang SK, et al. Beta-blockers in patients without heart failure after myocardial infarction. Cochrane Database Syst Rev. 2021;11(11):CD012565. doi: 10.1002/14651858.

300. Wen XS, Luo R, Liu J, et al. Short-term/long-term prognosis with or without betablockers in patients without heart failure and with preserved ejection fraction after acute myocardial infarction: a multicenter retrospective cohort study. BMC Cardiovasc Disord. 2022;22(1):193. doi: 10.1186/s12872-022-02631-8.

301. Won H, Suh Y, Kim GS, et al. Clinical Impact of Beta-Blockers in Patients with Myocardial Infarction from the Korean National Health Insurance Database. Korean Circ J. 2020; 50(6):499-508. doi: 10.4070/kcj.2019.0231.

302. Desta L, Khedri M, Jernberg T, et al. Adherence to beta-blockers and long-term risk of heart failure and mortality after a myocardial infarction. ESC Heart Fail. 2021;8(1):344-55. doi: 10.1002/ehf2.13079.

303. Song PS, Kim M, Seong SW, et al. Heart failure with mid-range ejection fraction and the effect of β-blockers after acute myocardial infarction. Heart Vessels. 2021;36(12): 1848-55. doi: 10.1007/s00380-021-01876-1.

304. Velásquez-Rodríguez J, Bruña V, Vicent L, et al. Influence of left ventricular systolic function on the long-term benefit of beta-blockers after ST-segment elevation myocardial infarction. Rev Port Cardiol (Engl Ed). 2021;40(4):285-90. doi: 10.1016/j.repc.2020.07.017.

305. Puymirat E, Riant E, Aissaoui N, et al. βblockers and mortality after myocardial infarction in patients without heart failure: ayesiand pro- spective cohort study. BMJ. 2016;354:i4801. doi: 10.1136/bmj.i4801.

306. Zeitouni M, Kerneis M, Lattuca B, et al. Do patients need lifelong β-blockers after an uncomplicated myocardial infarction? Am J Cardiovasc Drugs. 2019;19:431-8. doi: 10.1007/s40256-019-00338-4.

307. Dargie HJ. Effect of carvedilol on outcome after myocardial infarction in patients with left-ventricular dysfunction: the CAPRICORN randomised trial. Lancet. 2001;357(9266): 1385-90.

308. Crea F, Deanfield J, Crean P, et al. Effects of verapamil in preventing early postinfarction angina and reinfarction. Am J Cardiol. 1985;1;55(8):900-4.

309. Yusuf S, Held P, Furberg C. Update of effects of calcium antagonists in myocardial infarction or angina in light of the second Danish Verapamil Infarction Trial (DAVIT-II) and other recent studies. Am J Cardiol. 1991;67(15):1295-7.

310. Goldbourt U, Behar S, Reicher-Reiss H, et al. Early administration of nifedipine in suspected acute myocardial infarction. The secondary prevention reinfarction Israel nifedipine trial 2 study. Arch Intern Med. 1993;153(3):345-53.

311. ACE Inhibitor Myocardial Infarction Collaborative Group. Indications for ACE inhibitors in the early treatment of acute myocardial infarction: systematic overview of individual data from 100,000 patients in randomized trials. Circulation. 1998;97(22):2202-12.

312. Flather MD, Yusuf S, Køber L, et al. Long-term ACE-inhibitor therapy in patients with heart failure or left-ventricular dysfunction: a systematic overview of data from individual patients. ACE-Inhibitor Myocardial Infarction Collaborative Group. Lancet. 2000;355(9215):1575-81.

313. Pfeffer MA, Greaves SC, Arnold JM, et al. Early versus delayed angiotensin-converting enzyme inhibition therapy in acute myocardial infarction. The healing and early afterload reducing therapy trial. Circulation. 1997;95(12):2643-51.

314. Pfeffer MA, McMurray JJ, Velazquez EJ, et al. Valsartan in Acute Myocardial Infarction Trial Investigators. Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. N Engl J Med. 2003;349(20):1893-906.

315. McMurray JJ, Packer M, Desai AS, et al.; on behalf of the PARADIGM-HF Investigators and Committees. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371(11):993-1004.

316. Berwanger O, Pfeffer M, Claggett D, et al. Sacubitril/valsartan versus ramipril for patients with acute myocardial infarction: win-ratio analysis of the PARADISE-MI trial. European Journal of Heart Failure. 2022. doi: 10.1002/ejhf.2663.

317. Gu J, Wang Y, Wang CQ, Zhang JF. The initial timing and dosage pattern of sacubitril/valsartan in patients with acute myocardial infarction undergoing percutaneous coronary intervention. Eur J Intern Med. 2023:S0953-6205(23)00091-2. doi: 10.1016/j.ejim.2023.03.019.

318. Jering KS, Claggett B, Pfeffer MA, et al. Prospective ARNI vs. ACE inhibitor trial to DetermIne Superiority in reducing heart failure Events after Myocardial Infarction (PARADISE-MI): design and baseline characteristics. Eur J Heart Fail. 2021;23(6):1040-8. doi: 10.1002/ejhf.2191.

319. Lin G, Chen W, Wu M, et al. The value of sacubitril/valsartan in acute anterior wall ST-segment elevation myocardial infarction before emergency Percutaneous coronary intervention. Cardiology. 2022. doi: 10.1159/000527357.

320. Mehran R, Steg PhG, Pfeffer MA, et al. The Effects of Angiotensin Receptor-Neprilysin Inhibition on Major Coronary Events in Patients With Acute Myocardial Infarction: Insights From the PARADISE-MI Trial. Circulation. 2022;146:1749-57. doi: 10.1161/CIRCULATIONAHA.122.060841.

321. Pfeffer MA, Claggett B, Lewis EF, et al. Impact of Sacubitril/Valsartan Versus Ramipril on Total Heart Failure Events in the PARADISE-MI Trial. Circulation. 2022;145:87-9. doi: 10.1161/CIRCULATIONAHA.121.057429.

322. Pfeffer MA, Claggett B, Lewis EF, et al. Angiotensin Receptor—Neprilysin Inhibition in Acute Myocardial Infarction. N Engl J Med. 2021;385:1845-55. doi: 10.1056/NEJMoa2104508.

323. Rezq A, Saad M, El Nozahi M. Comparison of the Efficacy and Safety of Sacubitril/Valsartan versus Ramipril in Patients With ST-Segment Elevation Myocardial Infarction. Am J Cardiol. 2021;143:7-13. doi: 10.1016/j.amjcard.2020.12.037.

324. Shah AM, Claggett B, Prasad N, et al. Impact of Sacubitril/Valsartan Compared With Ramipril on Cardiac Structure and Function After Acute Myocardial Infarction: The PARADISE-MI Echocardiographic Substudy. Circulation. 2022;146:1067-81. doi: 10.1161/CIRCULATIONAHA.122.059210.

325. Xiong B, Nie D, Qian J, et al. The benefits of sacubitril-valsartan in patients with acute myocardial infarction: a systematic review and meta-analysis. ESC Heart Fail. 2021; 8(6):4852-62. doi: 10.1002/ehf2.13677.

326. Yang P, Han Y, Lian C, Wu X. Efficacy and safety of sacubitril/valsartan vs. valsartan in patients with acute myocardial infarction: A meta-analysis. Front Cardiovasc Med. 2022;9:988117. doi: 10.3389/fcvm.2022.988117.

327. Zhou X, Zhu H, Zheng Y, et al. A systematic review and meta-analysis of sacubitrilvalsartan in the treatment of ventricular remodeling in patients with heart failure after acute myocardial infarction. Front Cardiovasc Med. 2022;9:953948. doi: 10.3389/fcvm.2022.953948.

328. Pitt B, Remme W, Zannad F, et al.; Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study Investigators. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003;348(14):1309-21.

329. Montalescot G, Pitt B, Lopez de Sa E, et al., REMINDER Investigators. Early eplerenone treatment in patients with acute ST-elevation myocardial infarction without heart failure: the Randomized Double-Blind Reminder Study. Eur Heart J. 2014;35(34):2295-302.

330. Dahal K, Hendrani A, Sharma SP, et al. Aldosterone antagonist therapy and mortality in patients with ST-segment elevation myocardial infarction without heart failure: a systematic review and meta-analysis. JAMA Intern Med. 2018;178(7):913-20. doi: 10.1001/jamainternmed.2018.0850.

331. Beygui F, Van Belle E, Ecollan P, et al. Individual participant data analysis of two trials on aldosterone blockade in myocardial infarction. Heart. 2018;104:1843-9.

332. Stenestrand U, Wallentin L, for the Swedish Register of Cardiac Intensive Care (RIKS-HIA). Early Statin Treatment Following Acute Myocardial Infarction and 1-Year Survival. JAMA. 2001;285(4):430-6. doi: 10.1001/jama.285.4.430.

333. Aronow HD, Topol EJ, Roe MT, et al. Effect of lipid-lowering therapy on early mortality after acute coronary syndromes: an observational study. Lancet. 2001;357:1063-8.

334. Giugliano RP, Antman EM, Thompson SL, et al. Lipid lowering drug therapy initiated during hospitalization for acute MI is associated with lower postdischarge 1-year mortality. J Am Coll Cardiol. 2001;37(suppl A):316A. Abstract.

335. Fonarow GC, Wright RS, Spencer FA, et al. Effect of statin use within the first 24 hours of admission for acute myocardial infarction on early morbidity and mortality. Am J Cardiol. 2005;96:611-6.

336. Han X, Zhang Y, Yin L, et al. Statin in the treatment of patients with myocardial infarction: a meta-analysis. Medicine. 2018;97;12(2018):e0167. doi: 10.1097/MD.0000000000010167.

337. Navarese EP, Kowalewski M, Andreotti F, et al. Meta-analysis of time-related benefits of statin therapy in patients with acute coronary syndrome undergoing percutaneous coronary intervention. Am J Cardiol. 2014;113:1753-64. doi: 10.1016/j.amjcard.2014.02.034.

338. Nusca A, Melfi R, Patti G, Sciascio GD. Statin loading before percutaneous coronary intervention: proposed mechanisms and applications. Future Cardiol. 2010;6(5):579-89. doi: 10.2217/fca.10.77.

339. Winchester DE, Wen X, Xie L, Bavry AA. Evidence of pre-procedural statin therapy a meta-analysis of randomized trials. J Am Coll Cardiol. 2010;56:1099-109. doi: 10.1016/j.jacc.2010.04.023.

340. Benjo AM, El-Hayek GE, Messerli F, et al. High dose statin loading prior to percutaneous coronary intervention decreases cardiovascular events: a meta-analysis of randomized controlled trials. Catheter Cardiovasc Interv. 2015;85:53-60. doi: 10.1002/ccd.25302.

341. Yu XL, Zhang HJ, Ren SD, et al. Effects of loading dose of atorvastatin before percutaneous coronary intervention on periprocedural myocardial injury. Coron Artery Dis. 2011;22:87-91. doi: 10.1097/MCA.0b013e328341baee.

342. Liu Y, Su Q, Li L. Efficacy of short-term high-dose atorvastatin pretreatment in patients with acute coronary syndrome undergoing percutaneous coronary intervention: a metaanalysis of nine randomized controlled trials. Clin Cardiol. 2013;36(12):E41-8.

343. Ma Y, Xiang C, Zhang B. Efficacy Evaluation of high-dose atorvastatin pretreatment in patients with acute coronary syndrome: a meta-analysis of randomized controlled trials. Med Sci Monit. 2018;24:9354-63. doi: 10.12659/MSM.912544.

344. Ma M, Bu L, Shi L, et al. Effect of loading dose of atorvastatin therapy prior to percutaneous coronary intervention in patients with acute coronary syndrome: a meta-analysis of six randomized controlled trials. Drug Design, Development and Therapy. 2019;13: 1233-40.

345. Cannon CP, Braunwald E, McCabe CH, et al. Pravastatin or Atorvastatin Evaluation and Infection Therapy-Thrombolysis in Myocardial Infarction 22 Investigators. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med. 2004;350(15):1495-504.

346. Cannon ChP, Blazing MA, Giugliano RP, et al.; for the IMPROVE-IT Investigators. Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes. N Engl J Med. 2015;372: 2387-97.

347. Cholesterol Treatment Trialists' (CTT) Collaboration; Fulcher J, O'Connell R, Voysey M, et al. Efficacy and safety of LDL-lowering therapy among men and women: metaanalysis of individual data from 174,000 participants in 27 randomised trials. Lancet. 2015;385(9976):1397-405. doi: 10.1016/S0140-6736(14)61368-4.

348. Schwartz GG, Steg PG, Szarek M, et al.; and ODYSSEY OUTCOMES Committees and Investigators. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med. 2018;379:2097-107.

349. Sabatine MS, Giugliano RP, Keech AC, et al.; FOURIER Steering Committee and Investigators. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376(18):1713-22.

350. Schwartz GG, Steg G, Szarek M, et al.; for the ODYSSEY OUTCOMES Committees and Investigators. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N Engl J Med. 2018;379:2097-107.

351. Jukema JW, Szarek M, Zijlstra LE, et al. ODYSSEY OUTCOMES Committees and Investigators. Alirocumab in Patients With Polyvascular Disease and Recent Acute Coronary Syndrome: ODYSSEY OUTCOMES Trial. J Am Coll Cardiol. 2019;74(9):1167-76. doi: 10.1016/j.jacc.2019.03.013.

352. Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2019. doi: 10.1093/eurheartj/ehz455.

353. Koskinas KC, Windecker S, Pedrazzini G, et al. Evolocumab for early reduction of LDL cholesterol levels in patients with acute coronary syndromes (EVOPACS). J Am Coll Cardiol. 2019;74(20):2452-62. doi: 10.1016/j.jacc.2019.08.010.

354. Trankle CR, Wohlford G, Buckley LF, et al. Alirocumab in acute myocardial infarction: results from the Virginia commonwealth university alirocumab response trial (VCUAlirocRT). Journal of cardiovascular pharmacology. 2019;74(3):266-9. doi: 10.1097/FJC.0000000000000706.

355. Mehta SR, Pare G, Lonn EM, et al. Effects of routine early treatment with PCSK9 inhibitors in patients undergoing primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: a randomised, double-blind, sham-controlled trial. EuroIntervention. 2022;18(11):e888-e896. doi: 10.4244/EIJ-D-22-00735.

356. Räber L, Ueki Y, Otsuka T, et al. Effect of Alirocumab Added to High-Intensity Statin Therapy on Coronary Atherosclerosis in Patients With Acute Myocardial Infarction: The PACMAN-AMI Randomized Clinical Trial. JAMA. 2022;327(18):1771-81. doi: 10.1001/jama.2022.5218.

357. Ray KK, Wright RS, Khaled D, et al.; ORION-10 and ORION-11 Investigators. Two Phase 3 Trials of Inclisiran in Patients with Elevated LDL Cholesterol. N Engl J Med. 2020;382(16):1507-19. doi: 10.1056/NEJMoa1912387.

358. Lee J, Egolum U, Parihar H, et al. Effect of Ezetimibe Added to High-Intensity Statin Therapy on Low-Density Lipoprotein Cholesterol Levels: A Meta-Analysis. Cardiol Res. 2021;12(2):98-108. doi: 10.14740/cr1224.

359. Wang X, Wen D, Chen Y, et al. PCSK9 inhibitors for secondary prevention in patients with cardiovascular diseases: a bayesian network meta-analysis. Cardiovasc Diabetol. 2022;21(1):107. doi: 10.1186/s12933-022-01542-4.

360. Ray KK, Reeskamp LF, Laufs U, et al. Combination lipid-lowering therapy as first-line strategy in very high-risk patients. Eur Heart J. 2022;43(8):830-3. doi: 10.1093/eurheartj/ehab718.

361. Burnett H, Fahrbach K, Cichewicz A, et al. Comparative efficacy of non-statin lipidlowering therapies in patients with hypercholesterolemia at increased cardiovascular risk: a network meta-analysis. Curr Med Res Opin. 2022;38(5):777-84. doi: 10.1080/03007995.2022.2049164.

362. Malmberg K, Ryden L, Efendic S, et al. Randomized trial of insulin-glucose infusion followed by subcutaneous insulin treatment in diabetic patients with acute myocardial infarction (DIGAMI study): effects on mortality at 1 year. J Am Coll Cardiol. 1995;26:57-65.

363. Malmberg K. Prospective randomised study of intensive insulin treatment on long term survival after acute myocardial infarction in patients with diabetes mellitus. DIGAMI (Diabetes Mellitus, Insulin Glucose Infusion in Acute Myocardial Infarction) Study Group. BMJ. 1997;314:1512-5.

364. Ritsinger V, Malmberg K, Martensson A, et al. Intensified insulin-based glycaemic control after myocardial infarction: mortality during 20 year follow-up of the randomised Diabetes Mellitus Insulin Glucose Infusion in Acute Myocardial Infarction (DIGAMI 1) trial. Lancet Diabetes Endocrinol. 2014;2:627-33.

365. Piepoli MF, Corrà U, Adamopoulos S, et al. Secondary prevention in the clinical management of patients with cardiovascular diseases. Core components, standards and outcome measures for referral and delivery: A Policy Statement from the Cardiac Rehabilitation Section of the European Association for Cardiovascular Prevention & Rehabilitation. Endorsed by the Committee for Practice Guidelines of the European Society of Cardiology. Eur J Prev Cardiol. 2014;21(6):664-81. doi: 10.1177/2047487312449597.

366. Gislason GH, Jacobsen S, Rasmussen JN, et al. Risk of death or reinfarction associated with the use of selective cyclooxygenase-2 inhibitors and nonselective nonsteroidal antiinflammatory drugs after acute myocardial infarction. Circulation. 2006;113:2906-13.

367. Kearney PM, Baigent C, Godwin J, et al. Do selective cyclo-oxygenase-2 inhibitors and traditional non-steroidal anti-inflammatory drugs increase the risk of atherothrombosis? Meta-analysis of randomised trials. BMJ. 2006;332:1302-8.

368. Gibson CM, Pride YB, Aylward PE, et al. Association of non-steroidal anti-inflammatory drugs with outcomes in patients with ST-segment elevation myocardial infarction treated with fibrinolytic therapy: an ExTRACT-TIMI 25 analysis. J Thromb Thrombolysis. 2009;27(1):11-7. doi: 10.1007/s11239-008-0264-4.

369. The Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346:549-6. doi: 10.1056/NEJMoa012689.

370. Bernard SA, Gray TW, Buist MD, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 2002;346:557-63. doi: 10.1056/NEJMoa003289.

371. Belliard G, Catez E, Charron C, et al. Efficacy of therapeutic hypothermia after outof-hospital cardiac arrest due to ventricular fibrillation. Resuscitation. 2007;75:252-9. doi: 10.1016/j.resuscitation.2007.04.014.

372. Nielsen N, Wetterslev J, Cronberg T, et al. Targeted temperature management at 33 C versus 36 C after cardiac arrest. N Engl J Med. 2013;369:2197-206. doi: 10.1056/NEJMoa1310519.

373. Dankiewicz J, Cronberg T, Lilja G, et al. Hypothermia versus Normothermia after Out-of-Hospital Cardiac Arrest. N Engl J Med. 2021;384(24):2283-94. doi: 10.1056/NEJMoa2100591.

374. Wolfrum S, Roedl K, Hanebutte A, et al. Temperature control after in-hospital cardiac arrest: a randomized clinical trial. Circulation. 2022;146:1357-66. doi: 10.1161/circulationaha.122.060106.

375. Vaahersalo J, Hiltunen P, Tiainen M, et al. Therapeutic hypothermia after out-of-hospital cardiac arrest in Finnish intensive care units: the FINNRESUSCI study. Intensive Care Med. 2013;39:826-37. doi: 10.1007/s00134-013-2868-1.

376. Okazaki T, Hifumi T, Kawakita K, Kuroda Y; Japanese Association for Acute Medicine outof-hospital cardiac arrest (JAAM-OHCA) registry. Targeted temperature management guided by the severity of hyperlactatemia for out-of-hospital cardiac arrest patients: a post hoc analysis of a nationwide, multicenter prospective registry. Ann Intensive Care. 2019;9(1):127. doi: 10.1186/s13613-019-0603-y.

377. Callaway CW, Coppler PJ, Faro J, et al. Association of Initial Illness Severity and Outcomes After Cardiac Arrest With Targeted Temperature Management at 36 C or 33 C. JAMA Netw Open. 2020;3(7):e208215. doi: 10.1001/jamanetworkopen.2020.8215.

378. Nishikimi M, Ogura T, Nishida K, et al. Outcome Related to Level of Targeted Temperature Management in Postcardiac Arrest Syndrome of Low, Moderate, and High Severities: A Nationwide Multicenter Prospective Registry. Crit Care Med. 2021;49(8):e741-e750. doi: 10.1097/CCM.0000000000005025.

379. Lascarrou JB, Merdji H, Le Gouge A, et al. Targeted Temperature Management for Cardiac Arrest with Nonshockable Rhythm. N Engl J Med. 2019;381(24):2327-37. doi: 10.1056/NEJMoa190666.

380. Perkins GD, Graesner JT, Semeraro F, et al. European Resuscitation Council Guidelines 2021: executive summary. Resuscitation. 2021;161:1-60. doi: 10.1016/j.resuscitation.2021.02.003.

381. Nolan JP, Sandroni C, Andersen LW, et al. ERC-ESICM guidelines on temperature control after cardiac arrest in adults. Resuscitation. 2022;172:229-36. doi: 10.1016/j.resuscitation.2022.01.009.

382. Hassager C, Schmidt H, Møller JE, et al. Duration of device-based fever prevention after cardiac arrest. N Engl J Med. 2023;388:888-97. doi: 10.1056/NEJMoa2212528.

383. Bonnefoy-Cudraz E, Bueno H, Casella G, et al. Editor's Choice — acute cardiovascular care association position paper on intensive cardiovascular care units: an update on their definition, structure, organisation and function. Eur Heart J Acute Cardiovasc Care. 2018;7:80-95. doi: 10.1177/2048872617724269.

384. Khot UN, Jia G, Moliterno DJ, et al. Prognostic importance of physical examination for heart failure in non-ST-elevation acute coronary syndromes: the enduring value of Killip classification. JAMA. 2003;290(16):2174-81.

385. Masip J, Peacock WF, Price S, et al.; Acute Heart Failure Study Group of the Acute Cardiovascular Care Association and the Committee on Acute Heart Failure of the Heart Failure Association of the European Society of Cardiology. Indications and practical approach to non-invasive ventilation in acute heart failure. Eur Heart J. 2018;39:1725.

386. Weng CL, Zhao YT, Liu QH, et al. Meta-analysis: non-invasive ventilation in acute cardiogenic pulmonary edema. Ann Intern Med. 2010;152(9):590-600.

387. Gray A, Goodacre S, Newby DE, et al.; 3CPO Trialists. Noninvasive ventilation in acute cardiogenic pulmonary edema. N Engl J Med. 2008;359(2):142-51.

388. McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42(36):3599-726. doi: 10.1093/eurheartj/ehab368.

389. Mullens W, Damman K, Harjola VP, et al. The use of diuretics in heart failure with congestion — a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2019;21:137-55. doi: 10.1002/ejhf.1369.

390. Publication Committee for the VMAC Investigators (Vasodilatation in the Management of Acute CHF). Intravenous nesiritide vs nitroglycerin for treatment of decompensated congestive heart failure: a randomized controlled trial. JAMA. 2002;287:15311540.

391. Cotter G, Metzkor E, Kaluski E, et al. Randomised trial of high-dose isosorbide dinitrate plus low-dose furosemide versus high-dose furosemide plus low-dose isosorbide dinitrate in severe pulmonary oedema. Lancet. 1998;351:389393.

392. Levy P, Compton S, Welch R, et al. Treatment of severe decompensated heart failure with high-dose intravenous nitroglycerin: a feasibility and outcome analysis. Ann Emerg Med. 2007;50:144152.

393. Kozhuharov N, Goudev A, Flores D, et al. Effect of a strategy of comprehensive vasodilation vs usual care on mortality and heart failure rehospitalization among patients with acute heart failure: the GALACTIC randomized clinical trial. JAMA. 2019;322: 22922302.

394. Freund Y, Cachanado M, Delannoy Q, et al. Effect of an emergency department care bundle on 30-day hospital discharge and survival among elderly patients with acute heart failure: the ELISABETH randomized clinical trial. JAMA. 2020;324:19481956.

395. Peacock WF, Hollander JE, Diercks DB, et al. Morphine and outcomes in acute decompensated heart failure: an ADHERE analysis. Emerg Med J. 2008;25:205209.

396. Gil V, Dominguez-Rodriguez A, Masip J, et al. Morphine use in the treatment of acute cardiogenic pulmonary edema and its effects on patient outcome: a systematic review. Curr Heart Fail Rep. 2019;16:8188.

397. Miro O, Gil V, Martin-Sanchez FJ, et al.; ICA-SEMES Research Group. Morphine use in the ED and outcomes of patients with acute heart failure: a propensity score-matching analysis based on the EAHFE registry. Chest. 2017;152:821832.

398. Caspi O, Naami R, Halfin E, Aronson D. Adverse dose-dependent effects of morphine therapy in acute heart failure. Int J Cardiol. 2019;293:131136.

399. Bueno H, Betriu A, Heras M, et al. Primary angioplasty vs. fibrinolysis in very old patients with acute myocardial infarction: TRIANA (TRatamiento del Infarto Agudo de miocardio eN Ancianos) randomized trial and pooled analysis with previous studies. Eur Heart J. 2011;32:51-60. doi: 10.1093/eurheartj/ehq375.

400. Santiago de Araújo Pio C, Marzolini S, Pakosh M, Grace SL. Effect of cardiac rehabilitation dose on mortality and morbidity: a systematic review and meta-regression analysis. Mayo Clin Proc. 2017;92:1644-59. doi: 10.1016/j.mayocp.2017.07.019.

401. Anderson L, Sharp GA, Norton RJ, et al. Home-based versus centre-based cardiac rehabilitation. Cochrane Database Syst Rev. 2017;6:CD007130. doi: 10.1002/14651858.CD007130.pub4.

402. Naidu SS, Baran DA, Jentzer JC, et al. SCAI SHOCK Stage Classification Expert Consensus Update: A Review and Incorporation of Validation Studies: This statement was endorsed by the American College of Cardiology (ACC), American College of Emergency Physicians (ACEP), American Heart Association (AHA), European Society of Cardiology (ESC) Association for Acute Cardiovascular Care (ACVC), International Society for Heart and Lung Transplantation (ISHLT), Society of Critical Care Medicine (SCCM), and Society of Thoracic Surgeons (STS) in December 2021. J Am Coll Cardiol. 2022;79(9):933-46. doi: 10.1016/j.jacc.2022.01.018.

403. Neumann FJ, Sousa-Uva M, Ahlsson A, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J. 2019;40:87-165. doi: 10.1093/eurheartj/ehy394.

404. Hochman JS, Sleeper LA, Webb JG, et al. Early revascularization and long-term survival in cardiogenic shock complicating acute myocardial infarction. JAMA. 2006;295:2511-5.

405. Maack C, Eschenhagen T, Hamdani N, et al. Treatments targeting inotropy. Eur Heart J. 2019;40:36263644.

406. Mebazaa A, Yilmaz MB, Levy P, et al. Recommendations on pre-hospital & early hospital management of acute heart failure: a consensus paper from the Heart Failure Association of the European Society of Cardiology, the European Society of Emergency Medicine and the Society of Academic Emergency Medicine. Eur J Heart Fail. 2015;17:544558.

407. Mebazaa A, Motiejunaite J, Gayat E, et al. ESC Heart Failure Long-Term Registry Investigators. Long-term safety of intravenous cardiovascular agents in acute heart failure: results from the European Society of Cardiology heart failure long-term registry. Eur J Heart Fail. 2018;20:332341.

408. De Backer D, Biston P, Devriendt J, et al. SOAP II Investigators. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362(9):779-89.

409. Levy B, Clere-Jehl R, Legras A, et al. Collaborators. Epinephrine versus norepinephrine for cardiogenic shock after acute myocardial infarction. J Am Coll Cardiol. 2018;72:173182.

410. Leopold V, Gayat E, Pirracchio R, et al. Epinephrine and short-term survival in cardiogenic shock: an individual data meta-analysis of 2583 patients. Intensive Care Med. 2018;44:847856.

411. Kim Y, Shapero K, Ahn SS, et al. Outcomes of mechanical circulatory support for acute myocardial infarction complicated by cardiogenic shock. Catheter Cardiovasc Interv. 2022;99:658-63. doi: 10.1002/ccd.29834.

412. Ostadal P, Rokyta R, Karasek J, et al. Extracorporeal membrane oxygenation in the therapy of cardiogenic shock: results of the ECMO-CS randomized clinical trial. Circulation. 2022;147:454-64. doi: 10.1161/circulationaha.122.062949.

413. Thiele H, Zeymer U, Neumann FJ, et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med. 2012;367:1287-96. doi: 10.1056/NEJMoa1208410.

414. Thiele H, Zeymer U, Neumann FJ, et al. Intra-aortic balloon counterpulsation in acute myocardial infarction complicated by cardiogenic shock (IABP-SHOCK II): final 12 month results of a randomised, openlabel trial. Lancet. 2013;382:1638-45. doi: 10.1016/s0140-6736(13)61783-3.

415. Unverzagt S, Buerke M, de Waha A, et al. Intra-aortic balloon pump counterpulsation (IABP) for myocardial infarction complicated by cardiogenic shock. Cochrane Database Syst Rev. 2015;2015:Cd007398. doi: 10.1002/14651858.CD007398.pub3.

416. Thiele H, Zeymer U, Thelemann N, et al. Intraaortic balloon pump in cardiogenic shock complicating acute myocardial infarction: long-term 6-year outcome of the randomized IABP-SHOCK II trial. Circulation. 2018;139:395-403. doi: 10.1161/circulationaha.118.038201.

417. Chioncel O, Parissis J, Mebazaa A, et al. Epidemiology, pathophysiology and contemporary management of cardiogenic shock — a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2020;22:13151341.

418. Dumas F, Cariou A, Manzo-Silberman S, et al. Immediate percutaneous coronary intervention is associated with better survival after out-of-hospital cardiac arrest: insights from the PROCAT (Parisian Region Out of hospital Cardiac ArresT) registry. Circ Cardiovasc Interv. 2010;3(3):200-7.

419. Spaulding CM, Joly LM, Rosenberg A, et al. Immediate coronary angiography in survivors of out-of-hospital cardiac arrest. N Engl J Med. 1997;336:1629-33. doi: 10.1056/nejm199706053362302.

420. Zeppenfeld K, Tfelt-Hansen J, de Riva M, et al. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death Developed by the task force for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death of the European Society of Cardiology (ESC) Endorsed by the Association for European Paediatric and Congenital Cardiology (AEPC). European Heart Journal. 2022;43:3997-4126.

421. Nademanee K, Taylor R, Bailey WE, et al. Treating electrical storm: sympathetic blockade versus advanced cardiac life support-guided therapy. Circulation. 2000;102:742-7. doi: 10.1161/01.cir.102.7.742.

422. Kudenchuk PJ, Cobb LA, Copass MK, et al. Amiodarone for resuscitation after out-ofhospital cardiac arrest due to ventricular fibrillation. N Engl J Med. 1999;341:871-8. doi: 10.1056/nejm199909163411203.

423. Levine JH, Massumi A, Scheinman MM, et al. Intravenous amiodarone for recurrent sustained hypotensive ventricular tachyarrhythmias. J Am Coll Cardiol. 1996;27:67-75. doi: 10.1016/0735-1097(95)00427-0.

424. Jacobsen RM, Jabbari R, Glinge C, et al. Potassium disturbances and risk of ventricular fibrillation among patients with ST-segment-elevation myocardial infarction. J Am Heart Assoc. 2020;9:e014160.

425. Moss AJ, Zareba W, Hall WJ, et al. Multicenter Automatic Defibrillator Implantation Trial II Investigators. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med. 2002;346(12):877-83.

426. Bardy GH, Lee KL, Mark DB, et al. Sudden Cardiac Death in Heart Failure Trial Investigators. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med. 2005;352(3):225-37.

427. Hess PL, Laird A, Edwards R, et al. Survival benefit of primary prevention implantable cardioverter-defibrillator therapy after myocardial infarction: does time to implant matter? A metaanalysis using patient-level data from 4 clinical trials. Heart Rhythm. 2013;10(6):828-35.

428. Deedwania PC, Singh BN, Ellenbogen K, et al. Spontaneous conversion and maintenance of sinus rhythm by amiodarone in patients with heart failure and atrial fibrillation: observations from the veterans affairs Congestive Heart failure Survival Trial of Antiarrhythmic Therapy (CHF-STAT). Circulation. 1998;98:2574-9. doi: 10.1161/01.cir.98.23.2574.

429. Hofmann R, Steinwender C, Kammler J, et al. Intravenous amiodarone bolus for treatment of atrial fibrillation in patients with advanced congestive heart failure or cardiogenic shock. Wien Klin Wochenschr. 2004;116:744-9. doi: 10.1007/s00508-004-0264-0.

430. Hindricks G, Potpara T, Dagres N, et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS) The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC). European Heart Journal. 2020;42:373-498.

431. Hou ZY, Chang MS, Chen CY, et al. Acute treatment of recent-onset atrial fibrillation and flutter with a tailored dosing regimen of intravenous amiodarone: a randomized, digoxincontrolled study. Eur Heart J. 1995;16:521-8.

432. Segal JB, McNamara RL, Miller MR, et al. The evidence regarding the drugs used for ventricular rate control. J Fam Pract. 2000;49:47-59.

433. Schmitt J, Duray G, Gersh BJ, Hohnloser SH. Atrial fibrillation in acute myocardial infarction: a systematic review of the incidence, clinical features and prognostic implications. Eur Heart J. 2009;30:1038-45. doi: 10.1093/eurheartj/ehn579.

434. Batra G, Svennblad B, Held C, et al. All types of atrial fibrillation in the setting of myocardial infarction are associated with impaired outcome. Heart. 2016;102:926-33. doi: 10.1136/heartjnl-2015-308678.

435. Siu CW, Jim MH, Ho HH, et al. Transient atrial fibrillation complicating acute inferior myocardial infarction: implications for future risk of ischemic stroke. Chest. 2007;132:44-9. doi: 10.1378/chest.06-2733.

436. Feigl D, Ashkenazy J, Kishon Y. Early and late atrioventricular block in acute inferior myocardial infarction. J Am Coll Cardiol. 1984;4:35-8. doi: 10.1016/s0735-1097(84)80315-0.

437. Brady WJ, Swart G, DeBehnke DJ, et al. The efficacy of atropine in the treatment of hemodynamically unstable bradycardia and atrioventricular block: prehospital and emergency department considerations. Resuscitation. 1999;41:47-55. doi: 10.1016/s0300-9572(99)00032-5.

438. Glikson M, Nielsen JC, Kronborg MB, et al. 2021 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy Developed by the Task Force on cardiac pacing and cardiac resynchronization therapy of the European Society of Cardiology (ESC) With the special contribution of the European Heart Rhythm Association (EHRA). European Heart Journal. 2021;42(35):3427-520. doi: 10.1093/eurheartj/ehab364.

439. Singh SM, FitzGerald G, Yan AT, et al. High-grade atrioventricular block in acute coronary syndromes: insights from the Global Registry of Acute Coronary Events. European Heart Journal. 2015;36:976-83. doi: 10.1093/eurheartj/ehu357.

440. Gang UJ, Hvelplund A, Pedersen S, et al. High-degree atrioventricular block complicating ST-segment elevation myocardial infarction in the era of primary percutaneous coronary intervention. Europace. 2012;14:1639-45. doi: 10.1093/europace/eus161.

441. Matteucci M, Fina D, Jiritano F, et al. The use of extracorporeal membrane oxygenation in the setting of postinfarction mechanical complications: outcome analysis of the Extracorporeal Life Support Organization Registry. Interact Cardiovasc Thorac Surg. 2020;31:369-74. doi: 10.1093/icvts/ivaa108.

442. Damluji AA, van Diepen S, Katz JN, et al. Mechanical complications of acute myocardial infarction: a scientific statement from the American Heart Association. Circulation. 2021;144:e16-e35. doi: 10.1161/cir.0000000000000985.

443. Gong FF, Vaitenas I, Malaisrie SC, Maganti K. Mechanical complications of acute myocardial infarction: a review. JAMA Cardiol. 2021;6:341-9. doi:10.1001/jamacardio.2020.3690.

444. Haddadin S, Milano AD, Faggian G, et al. Surgical treatment of postinfarction left ventricular free wall rupture. J Card Surg. 2009;24:624-31.

445. Alerhand S, Adrian RJ, Long B, Avila J. Pericardial tamponade: A comprehensive emergency medicine and echocardiography review. Am J Emerg Med. 2022;58:159-74. doi: 10.1016/j.ajem.2022.05.001.

446. Ronco D, Matteucci M, Ravaux JM, et al. Mechanical circulatory support as a bridge to definitive treatment in post-infarction ventricular septal rupture. JACC Cardiovasc Interv. 2021;14:1053-66. doi: 10.1016/j.jcin.2021.02.046.

447. Fasol R, Lakew F, Wetter S. Mitral repair in patients with a ruptured papillary muscle. Am Heart J. 2000;139:549-54.

448. Alajaji WA, Akl EA, Farha A, et al. Surgical versus medical management of patients with acute ischemic mitral regurgitation: a systematic review. BMC Res Notes. 2015;8:712.

449. Kilic A, Sultan I, Chu D, et al. Mitral valve surgery for papillary muscle rupture: outcomes in 1342 patients from the society of thoracic surgeons database. Ann Thorac Surg. 2020;110:1975-81. doi: 10.1016/j.athoracsur.2020.03.097.

450. Valle JA, Miyasaka RL, Carroll JD. Acute mitral regurgitation secondary to papillary muscle tear: is transcatheter edge-to-edge mitral valve repair a new paradigm? Circ Cardiovasc Interv. 2017;10:e005050. doi: 10.1161/circinterventions.117.005050.

451. Adler Y, Charron P, Imazio M, et al. 2015 ESC Guidelines for the diagnosis and management of pericardial diseases: the Task Force for the diagnosis and management of pericardial diseases of the European Society of Cardiology (ESC) endorsed by: the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2015;36:2921-64. doi: 10.1093/eurheartj/ehv318.

452. Gevaert SA, Halvorsen S, Sinnaeve PR, et al. Evaluation and management of cancer patients presenting with acute cardiovascular disease: a Consensus Document of the Acute CardioVascular Care (ACVC) association and the ESC Council of Cardio-OncologyPart 1: acute coronary syndromes and acute pericardial diseases. Eur Heart J Acute Cardiovasc Care. 2021;10:947-59. doi: 10.1093/ehjacc/zuab056.

453. Verma BR, Montane B, Chetrit M, et al. Pericarditis and post-cardiac injury syndrome as a sequelae of acute myocardial infarction. Curr Cardiol Rep. 2020;22:127. doi: 10.1007/s11886-020-01371-5.

454. Abdelnabi M, Saleh Y, Fareed A, et al. Comparative study of oral anticoagulation in left ventricular thrombi (no-LVT trial). J Am Coll Cardiol. 2021;77:1590-2. doi: 10.1016/j.jacc.2021.01.049.

455. Lopez-Sendon J, Coma-Canella I, Alcasena S, et al. Electrocardiographic findings in acute right ventricular infarction: sensitivity and specificity of electrocardiographic alterations in right precordial leads V4R, V3R, V1, V2, and V3. J Am Coll Cardiol. 1985;6:1273-9. doi: 10.1016/s0735-1097(85)80213.

456. Kosuge M, Kimura K, Ishikawa T, et al. Implications of the absence of ST-segment elevation in lead V4R in patients who have inferior wall acute myocardial infarction with right ventricular involvement. Clin Cardiol. 2001;24:225-30. doi: 10.1002/clc.4960240310.

457. Dou Q, Wang W, Wang H, et al. Prognostic value of frailty in elderly patients with acute coronary syndrome: a systematic review and meta-analysis. BMC Geriatr. 2019;19(1): 222. doi: 10.1186/s12877-019-1242-8.

458. Man C, Xiang S, Fan Y. Frailty for predicting all-cause mortality in elderly acute coronary syndrome patients: A meta-analysis. Ageing Res Rev. 2019;52:1-6. doi: 10.1016/j.arr.2019.03.003.

459. Reiter M, Twerenbold R, Reichlin T, et al. Early diagnosis of acute myocardial infarction in the elderly using more sensitive cardiac troponin assays. Eur Heart J. 2011;32:1379-89. doi: 10.1093/eurheartj/ehr033.

460. Cholesterol Treatment Trialists' Collaboration. Efficacy and safety of statin therapy in older people: a meta-analysis of individual participant data from 28 randomised controlled trials. Lancet. 2019;393:407-15. doi: 10.1016/s0140-6736(18)31942-1.

461. Bach RG, Cannon CP, Giugliano RP, et al. Effect of simvastatin-ezetimibe compared with simvastatin monotherapy after acute coronary syndrome among patients 75 years or older: a secondary analysis of a randomized clinical trial. JAMA Cardiol. 2019;4:846-54. doi: 10.1001/jamacardio.2019.23.

462. Savonitto S, Ferri LA, Piatti L, et al. Comparison of reduced-dose prasugrel and standard-dose clopidogrel in elderly patients with acute coronary syndromes undergoing early percutaneous revascularization. Circulation. 2018;137:2435-45. doi: 10.1161/circulationaha.117.032180.

463. Roe MT, Armstrong PW, Fox KA, et al. Prasugrel versus clopidogrel for acute coronary syndromes without revascularization. N Engl J Med. 2012;367:1297-309. doi: 10.1056/NEJMoa1205512.

464. Xu W, Cai Y, Liu H, et al. Frailty as a predictor of all-cause mortality and readmission in older patients with acute coronary syndrome: A systematic review and meta-analysis. Wien Klin Wochenschr. 2020;132(11-12):301-9. doi: 10.1007/s00508-020-01650-9.

465. Damluji AA, Forman DE, Wang TY, et al.; American Heart Association Cardiovascular Disease in Older Populations Committee of the Council on Clinical Cardiology and Council on Cardiovascular and Stroke Nursing; Council on Cardiovascular Radiology and Intervention; and Council on Lifestyle and Cardiometabolic Health. Management of Acute Coronary Syndrome in the Older Adult Population: A Scientific Statement From the American Heart Association. Circulation. 2023;147(3):e32-e62. doi: 10.1161/CIR.0000000000001112.

466. Richter D, Guasti L, Walker D, et al. Frailty in cardiology: definition, assessment and clinical implications for general cardiology. A consensus document of the Council for Cardiology Practice (CCP), Association for Acute Cardio Vascular Care (ACVC), Association of Cardiovascular Nursing and Allied Professions (ACNAP), European Association of Preventive Cardiology (EAPC), European Heart Rhythm Association (EHRA), Council on Valvular Heart Diseases (VHD), Council on Hypertension (CHT), Council of CardioOncology (CCO), Working Group (WG) Aorta and Peripheral Vascular Diseases, WG e-Cardiology, WG Thrombosis, of the European Society of Cardiology, European Primary Care Cardiology Society (EPCCS). Eur J Prev Cardiol. 2022;29:216-27. doi: 10.1093/eurjpc/zwaa167.

467. Ambrosetti M, Abreu A, Corrà U, et al. Secondary prevention through comprehensive cardiovascular rehabilitation: From knowledge to implementation. 2020 update. A position paper from the Secondary Prevention and Rehabilitation Section of the European Association of Preventive Cardiology. Eur J Prev Cardiol. 2021;28(5):460-95. doi: 10.1177/2047487320913379.

468. Salzwedel A, Jensen K, Rauch B, et al. Effectiveness of comprehensive cardiac rehabilitation in coronary artery disease patients treated according to contemporary evidence based medicine: update of the Cardiac Rehabilitation Outcome Study (CROS-II). Eur J Prev Cardiol. 2020;27:1756-74. doi: 10.1177/2047487320905719.

469. van Halewijn G, Deckers J, Tay HY, et al. Lessons from contemporary trials of cardiovascular prevention and rehabilitation: a systematic review and meta-analysis. Int J Cardiol. 2017;232:294-303. doi: 10.1016/j.ijcard.2016.12.125.

470. Aronov DM, Krasnitsky VB, Bubnova MG, et al. The effect of physical training on physical performance, hemodynamics, blood lipids, clinical course and prognosis in patients with coronary artery disease after acute coronary events during complex rehabilitation and secondary prevention at the outpatient stage (Russian cooperative study). Kardiologyiia. 2009;(3):49-56. (In Russ.)

471. Frederix I, Vanhees L, Dendale P, Goetschalckx K. A review of telerehabilitation for cardiac patients. J Telemed Telecare. 2015;21:45-53. doi: 10.1177/1357633x14562732.

472. Thomas RJ, Beatty AL, Beckle TM, et al. Home-based cardiac rehabilitation: a scientific statement from the American Association of Cardiovascular and Pulmonary Rehabilitation, the American Heart Association, and the American College of Cardiology. Circulation. 2019;140:e69-e89. doi: 10.1161/CIR.0000000000000663.

473. Moulson N, Bewick D, Selway T, et al. Cardiac Rehabilitation During the COVID-19 Era: Guidance on Implementing Virtual Care. Can J Cardiol. 2020;36(8):1317-21. doi: 10.1016/j.cjca.2020.06.006.

474. Abreu A, Frederix I, Dendale P, et al. Standardization and quality improvement of secondary prevention through cardiovascular rehabilitation programmes in Europe: the avenue towards EAPC accreditation programme: a position statement of the Secondary Prevention and Rehabilitation Section of the European Association of Preventive Cardiology (EAPC). Eur J Prev Cardiol. 2020;28:496-509. doi: 10.1177/2047487320924912.

475. Dibben G, Faulkner J, Oldridge N, et al. Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst Rev. 2021;11:Cd001800. doi: 10.1002/14651858.CD001800.pub4.

476. Ivanova GE, Melnikova EV, Shmonin AA, et al. Application of the international classification of functioning in the process of medical rehabilitation. Bulletin of Restorative Medicine. 2018;(6):2-77. (In Russ.)

477. Bubnova MG, Aronov DM. Cardiorehabilitation: stages, principles and international classification of functioning. Preventive medicine. 2020:23(5):40-9. (In Russ.) doi: 10.17116/profmed20202305140.

478. Guazzi M, Adams V, Conraads V, et al. European Association for Cardiovascular Prevention & Rehabilitation; American Heart Association. EACPR/AHA Scientific Statement. Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Circulation. 2012;126(18):2261-74. doi: 10.1161/CIR.0b013e31826fb946.

479. Fletcher GF, Ades PA, Kligfield P, et al.; American Heart Association Exercise, Cardiac Rehabilitation, and Prevention Committee of the Council on Clinical Cardiology, Council on Nutrition, Physical Activity and Metabolism, Council on Cardiovascular and Stroke Nursing, and Council on Epidemiology and Prevention. Exercise standards for testing and training: a scientific statement from the American Heart Association. Circulation. 2013;128(8):873-934. doi: 10.1161/CIR.0b013e31829b5b44.

480. Long L, Anderson L, He J, et al. Exercise-based cardiac rehabilitation for stable angina: Systematic review and meta-analysis. Open Heart. 2019;6:e000989.

481. Fidalgo ASF, Farinatti P, Borges JP, et al. Institutional Guidelines for Resistance Exercise Training in Cardiovascular Disease: A Systematic Review. Sports Med. 2019;49:463-75.

482. Lawler PR, Filion KB, Eisenberg MJ. Efficacy of exercise-based cardiac rehabilitation postmyocardial infarction: A systematic review and meta-analysis of randomized controlled trials. Am Heart J. 2011;162:571-84.

483. Aronov DM, Bubnova MG, Barbarash OL, et al. Acute myocardial infarction with ST segment elevation electrocardiograms: rehabilitation and secondary prevention. Russian Journal of Cardiology. 2015;(1):6-52. (In Russ.) doi: 10.15829/1560-4071-2015-1-6-52.

484. Bubnova MG, Aronov DM, Krasnitsky VB, et al. Home physical training program after acute coronary syndrome and/or coronary artery endovascular intervention: effectiveness and motivation problem of patients. Therapeutic Archive. 2014;86(1):23-32. (In Russ.)

485. Hansen D, Bonné K, Alders T, et al. Exercise training intensity determination in cardiovascular rehabilitation: Should the guidelines be reconsidered? Eur J Prev Cardiol. 2019; 26(18):1921-8. doi: 10.1177/2047487319859450.

486. Borg G. Psychophysical scaling with applications in physical work and the perception of exertion. Scand J Work Environ Health. 1990;16(Suppl 1):55-8.

487. Hannan AL, Hing W, Simas V, et al. High-intensity interval training versus moderateintensity continuous training within cardiac rehabilitation: a systematic review and metaanalysis. Open Access J Sports Med. 2018;9:1-17. doi: 10.2147/OAJSM.S150596.

488. Conraads VM, Pattyn N, De Maeyer C, et al. Aerobic interval training and continuous training equally improve aerobic exercise capacity in patients with coronary artery disease: the SAINTEX-CAD study. Int J Cardiol. 2015;179:203-10. doi: 10.1016/j.ijcard.2014.10.155.

489. Pattyn N, Vanhees L, Cornelissen VA, et al. The long-term effects of a randomized trial comparing aerobic interval versus continuous training in coronary artery disease patients: 1-year data from the SAINTEX-CAD study. Eur J Prev Cardiol. 2016;23(11):1154-64. doi: 10.1177/2047487316631200.

490. Sommaruga M, Angelino E, Della Porta P, et al. Best practice in psychological activities in cardiovascular prevention and rehabilitation: Position Paper. Monaldi Arch Chest Dis. 2018;88:966. doi: 10.4081/monaldi.2018.966.

491. Pogosova N, Saner H, Pedersen SS, et al.; Cardiac Rehabilitation Section of the European Association of Cardiovascular Prevention and Rehabilitation of the European Society of Cardiology. Psychosocial aspects in cardiac rehabilitation: From theory to practice. A position paper from the Cardiac Rehabilitation Section of the European Association of Cardiovascular Prevention and Rehabilitation of the European Society of Cardiology. Eur J Prev Cardiol. 2015;22(10):1290-306. doi: 10.1177/2047487314543075.

492. Boytsov SA, Pogosova NV, Badtieva VA, et al. Cardiovascular prevention 2022. Russian national guidelines. Russian Journal of Cardiology. 2023;28(5):5452. (In Russ.)

493. Aldcroft SA, Taylor NF, Blackstock FC, O'Halloran PD. Psychoeducational rehabilitation for health behavior change in coronary artery disease: a systematic review of controlled trials. J Cardiopulm Rehabil Prev. 2011;31:273-81.

494. Rutledge T, Redwine LS, Linke SE, Mills PJ. A meta-analysis of mental health treatments and cardiac rehabilitation for improving clinical outcomes and depression among patients with coronary heart disease. Psychosom Med. 2013;75:335-49.

495. Ambrosetti M, Abreu A, Cornelissen V, et al. Delphi consensus recommendations on how to provide cardiovascular rehabilitation in the COVID-19 era. Eur J Prev Cardiol. 2021;28(5):541-57. doi: 10.1093/eurjpc/zwaa080.

496. Visseren FLJ, Mach F, Smulders YM, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021;42(34):3227-337. doi: 10.1093/eurheartj/ehab484.

497. Hartmann-Boyce J, Chepkin SC, Ye W, et al. Nicotine replacement therapy versus control for smoking cessation. Cochrane Database Syst Rev. 2018;5:CD000146. doi: 10.1002/14651858.CD000146.pub5.

498. Howes S, Hartmann-Boyce J, Livingstone-Banks J, et al. Antidepressants for smoking cessation. Cochrane Database Syst Rev. 2020;4:CD000031. doi:10.1002/14651858.CD000031.pub5.

499. Cahill K, Lindson-Hawley N, Thomas KH, et al. Nicotine receptor partial agonists for smoking cessation. Cochrane Database Syst Rev. 2016;2016:CD006103. doi: 10.1002/14651858.CD006103.pub7.

500. Delgado-Lista J, Alcala-Diaz JF, Torres-Peña JD, et al. Long-term secondary prevention of cardiovascular disease with a Mediterranean diet and a low-fat diet (CORDIOPREV): a randomised controlled trial. Lancet. 2022;399:1876-85. doi: 10.1016/s0140-6736(22)00122-2.

501. de Lorgeril M, Salen P, Martin JL, et al. Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study. Circulation. 1999;99:779-85. doi: 10.1161/01.cir.99.6.779.

502. Ekelund U, Tarp J, Steene-Johannessen J, et al. Dose-response associations between accelerometry measured physical activity andsedentary time and all cause mortality: systematic review and harmonisedmeta-analysis. BMJ. 2019;366:l4570. doi: 10.1136/bmj.l4570.

503. Patterson R, McNamara E, Tainio M, et al. Sedentarybehaviour and risk of all-cause, cardiovascular and cancer mortality, and incident type 2 diabetes: a systematic review and dose response meta-analysis. Eur J Epidemiol. 2018;33:811-29. doi: 10.1007/s10654-018-0380-1.

504. Holmes MV, Dale CE, Zuccolo L, et al. Association between alcohol and cardiovascular disease: Mendelian randomisation analysis based on individual participant data. BMJ. 2014;349:g4164. doi: 10.1136/bmj.g4164.

505. Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure lowering on outcome incidence in hypertension. 1. Overview, meta-analyses, and metaregression analyses of randomized trials. J Hypertens. 2014;32:2285-95.

506. SPRINT Research Group, Wright JT, Jr, Williamson JD, Whelton PK, et al. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015;373:2103-16.

507. Ettehad D, Emdin CA, Kiran A, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet. 2016;387: 957-67.

508. Fox KM. Efficacy of perindopril in reduction of cardiovascular events among patients with stable coronary artery disease: randomised, double-blind, placebo-controlled, multicentre trial (the EUROPA study). Lancet. 2003;362:782-8. doi: 10.1016/s0140-6736(03)14286-9.

509. Yusuf S, Sleight P, Pogue Bosch J, et al. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med. 2000;342:145-53. doi: 10.1056/nejm200001203420301.

510. UK Prospective Diabetes Study (UKPDS) Group. Intensive Blood-Glucose Control With Sulphonylureas or Insulin Compared With Conventional Treatment and Risk of Complications in Patients With Type 2 Diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352:837-53.

511. Skyler JS, Bergenstal R, Bonow RO, et al. Intensive Glycemic Control and the Prevention of Cardiovascular Events: Implications of the ACCORD, ADVANCE, and VA Diabetes Trials. Diabetes Care. 2009;32:187-92.

512. Fröbert O, Götberg M, Erlinge D, et al. Influenza vaccination after myocardial infarction: a randomized, double-blind, placebo-controlled, multicenter trial. Circulation. 2021; 144:1476-84.

513. Yedlapati SH, Khan SU, Talluri S, et al. Effects of influenza vaccine on mortality and cardiovascular outcomes in patients with cardiovascular disease: a systematic review and meta-analysis. J Am Heart Assoc. 2021;10:e019636. doi: 10.1161/jaha.120.019636.

514. Fonseca HAR, Furtado RHM, Zimerman A, et al. Influenza vaccination strategy in acute coronary syndromes: the VIP-ACS trial. Eur Heart J. 2022;43(41):4378-88. doi: 10.1093/eurheartj/ehac472.

515. Tardif JC, Kouz S, Waters DD, et al. Efficacy аnd safety of low-dose colchicine after myocardial infarction. N Engl J Med. 2019;381:2497-505. doi: 10.1056/NEJMoa1912388.

516. Nidorf SM, Fiolet ATL, Mosterd A, et al. Colchicine in patients with chronic coronary disease. N Engl J Med. 2020;383:1838-47. doi: 10.1056/NEJMoa2021372.

517. Thom S, Poulter N, Field J, et al.; UMPIRE Collaborative Group. Effects of a fixed-dose combination strategy on adherence and risk factors in patients with or at high risk of CVD: the UMPIRE randomized clinical trial. JAMA. 2013;310:918-29.

518. Castellano JM, Sanz G, Penalvo JL, et al. A polypill strategy to improve adherence: results from the FOCUS project. J Am Coll Cardiol. 2014;64:2071-82.

519. Astin F, Stephenson J, Probyn J, et al. Cardiologists' and patients' views about the informed consent process and their understanding of the anticipated treatment benefits of coronary angioplasty: a survey study. Eur J Cardiovasc Nurs. 2020;19:260-8. doi: 10.1177/1474515119879050.

520. Scott JT, Thompson DR. Assessing the information needs of post-myocardial infarction patients: a systematic review. Patient Educ Couns. 2003;50:167-77. doi: 10.1016/s0738-3991(02)00126-x.

521. Slater DK, Hlatky MA, Mark DB, et al. Outcome in suspected acute myocardial infarction with normal or minimally abnormal admission electrocardiographic findings. Am Journal Cardiol. 1987;60:766-70.

522. Lev EI, Battler A, Behar S, et al. Frequency, characteristics, and outcome of patients hospitalized with acute coronary syndromes with undetermined electrocardiographic patterns. American Journal Cardiol. 2003;91:224-7.

523. Ganovska E, Arrigo M, Helanova K, et al. Natriuretic peptides in addition to Zwolle score to enhance safe and early discharge after acute myocardial infarction: a prospective observational cohort study. Int J Cardiol. 2016;215:527-31.

524. Schellings DA, Adiyaman A, Giannitsis E, et al. Early discharge after primary percutaneous coronary intervention: the added value of N-terminal pro-brain natriuretic peptide to the Zwolle Risk Score. J Am Heart Assoc. 2014;3(6):e001089.

525. Tralhão A, Ferreira AM, Madeira S, et al. Applicability of the Zwolle risk score for safe early discharge after primary percutaneous coronary intervention in ST segment elevation myocardial infarction. Rev Port Cardiol. 2015;34(9):535-41. doi: 10.1016/j.repc.2015.04.006.

526. Grines CL, Marsalese DL, Brodie B, et al. Safety and costeffectiveness of early discharge after primary angioplasty in low-risk patients with acute myocardial infarction. PAMI-II Investigators. Primary Angioplasty in Myocardial Infarction. J Am Coll Cardiol. 1998; 31:967-72.

527. Beygui F, Cayla G, Roule V, et al.; ALBATROSS Investigators. Early Aldosterone Blockade in Acute Myocardial Infarction: The ALBATROSS Randomized Clinical Trial. J Am Coll Cardiol. 2016;67(16):1917-27. doi: 10.1016/j.jacc.2016.02.033.

528. Xu Y, Qiu Z, Yang R, et al. Efficacy of mineralocorticoid receptor antagonists in postmyocardial infarction patients with or without left ventricular dysfunction. A metaanalysis of randomized controlled trials. Medicine. 2018;97:51(e13690). doi: 10.1097/MD.0000000000013690.


Review

For citations:


Averkov O.V., Harutyunyan G.K., Duplyakov D.V., Konstantinova E.V., Konstantinova N.N., Shakhnovich R.M., Yavelov I.S., Yakovlev A.N., Abugov S.A., Alekyan B.G., Aronov D.M., Arkhipov M.V., Barbarash O.L., Boytsov S.A., Bubnova M.G., Vavilova T.N., Vasilyeva E.Yu., Galyavich A.S., Ganyukov V.I., Gilyarevsky S.R., Golubev E.P., Golukhova E.Z., Zateyshchikov D.A., Karpov Yu.A., Kosmacheva E.D., Lopatin Yu.M., Markov V.A., Merkulov E.V., Novikova N.A., Panchenko E.P., Pevzner D.V., Pogosova N.V., Prasol D.M., Protopopov A.V., Skrypnik D.V., Tarasov R.S., Tereshchenko S.N., Ustyugov S.A., Khripun A.V., Tsebrovskaya E.A., Shalaev S.V., Shlyakhto E.V., Shpektor A.V., Yakushin S.S. 2024 Clinical practice guidelines for Acute myocardial infarction with ST segment elevation electrocardiogram. Russian Journal of Cardiology. 2025;30(3):6306. (In Russ.) https://doi.org/10.15829/1560-4071-2025-6306. EDN: IVJCUK

Views: 6769


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)