Preview

Russian Journal of Cardiology

Advanced search

Adverse effects of intracardiac dyssynchrony and right ventricular pacing on contractile function and prognosis

https://doi.org/10.15829/1560-4071-2024-6259

EDN: RVWBZV

Abstract

Pacemaker-induced cardiomyopathy (PICM) is a complication of frequent right ventricular pacing, which in most studies is regarded as a decrease in the left ventricular ejection fraction with constant right ventricular pacing. However, cases of PICM with preserved left ventricular ejection fraction are insufficiently described, since the onset most often occurs as a phenotype of heart failure with preserved ejection fraction. The paper analyzes the studies on the role of constant right ventricular pacing and its contribution to PICM development.

About the Authors

D. Yu. Andreev
Vladimirsky Moscow Regional Research and Clinical Institute
Russian Federation

Moscow


Competing Interests:

None



M. G. Glezer
Vladimirsky Moscow Regional Research and Clinical Institute
Russian Federation

Moscow


Competing Interests:

None



A. A. Kalemberg
Vladimirsky Moscow Regional Research and Clinical Institute
Russian Federation

Moscow


Competing Interests:

None



References

1. Eppinger H, Rothberger CJ. Zur analyse des ekctrokardiogramms. Wien Klin Wochenschr. 1909;22:1091-8.

2. Vernooy K, Cornelussen RNM, Verbeek XAAM, et al. Cardiac resynchronization therapy cures dyssynchronopathy in canine left bundle-branch block hearts. European Heart Journal. 2007;28(17):2148-55. doi:10.1093/eurheartj/ehm207.

3. Sze E, Daubert JP. Left bundle branch block-induced left ventricular remodeling and its potential for reverse remodeling. Journal of Interventional Cardiac Electrophysiology. 2018;52(3):343-52. doi:10.1007/s10840-018-0407-2.

4. Vaillant C, Martins RP, Donal E, et al. Resolution of Left Bundle Branch Block—Induced Cardiomyopathy by Cardiac Resynchronization Therapy. Journal of the American College of Cardiology. 2013;61(10):1089-95. doi:10.1016/j.jacc.2012.10.053.

5. Curtius JM, Stechern V, Kuhn H, Loogen F. Echocardiographic follow-up in latent cardiomyopathy. Zeitschrift Fur Kardiologie. 1984;73(11):695-700.

6. Liu W-H, Chen M-C, Chen Y-L, et al. Right Ventricular Apical Pacing Acutely Impairs Left Ventricular Function and Induces Mechanical Dyssynchrony in Patients with Sick Sinus Syndrome: A Real-time Three-dimensional Echocardiographic Study. Journal of the American Society of Echocardiography. 2008;21(3):224-9. doi:10.1016/j.echo.2007.08.045.

7. Merchant FM. Pacing-induced cardiomyopathy: just the tip of the iceberg? European Heart Journal. 2019;40:3649-50.

8. Merchant FM, Mittal S. Pacing induced cardiomyopathy. Journal of Cardiovascular Electrophysiology. 2020;31:286-92.

9. Chung MK, Patton KK, Lau CP, et al. 2023 HRS/APHRS/LAHRS guideline on cardiac physiologic pacing for the avoidance and mitigation of heart failure. Heart Rhythm. 2023;20(9):e17-e91. doi:10.1016/j.hrthm.2023.03.1538.

10. Zhang H, Zhou YJ, Zeng YJ. Prognostic factors of pacing-induced cardiomyopathy. Chin Med J. 2020;133:1533-9. doi:10.1097/CM9.0000000000000856.

11. White PD, Sharpe MC, Chalder T, et al. Protocol for the PACE trial: A randomised controlled trial of adaptive pacing, cognitive behaviour therapy, and graded exercise as supplements to standardised specialist medical care versus standardised specialist medical care alone for patients with the chronic fatigue syndrome/myalgic encephalomyelitis or encephalopathy. BMC Neurol. 2007;7:6. doi:10.1186/1471-2377-7-6.

12. Kaye G, Ng JY, Ahmed S, et al. The prevalence of pacing‐induced cardiomyopathy (PICM) in patients with long term right ventricular pacing — is it a matter of definition? Heart Lung Circ. 2018;28:1027‐33.

13. Shah S, Henry A, Roselli C, et al. Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure. Nat. Commun. 2020;11:163.

14. Anand P, Brown JD, Lin CY, et al. BET Bromodomains Mediate Transcriptional Pause Release in Heart Failure. Cell. 2013;154:569-82.

15. Sweeney MO, Hellkamp AS, Ellenbogen KA, et al.; MOde Selection Trial Investigators. Adverse effect of ventricular pacing on heart failure and atrial fibrillation among patients with normal baseline QRS duration in a clinical trial of pacemaker therapy for sinus node dysfunction. Circulation. 2003;107(23):2932-7. doi:10.1161/01.CIR.0000072769.17295.B1.

16. Burchfield JS, Xie M, Hill JA. Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation. 2013;128(4):388-400. doi:10.1161/CIRCULATIONAHA.113.001878.

17. Oka T, Xu J, Molkentin JD. Re-employment of developmental transcription factors in adult heart disease. Semin Cell Dev Biol. 2007;18(1):117-31. doi:10.1016/j.semcdb.2006.11.012.

18. Cimiotti D, Fujita-Becker S, Möhner D, et al. Infantile restrictive cardiomyopathy: cTnI-R170G/W impair the interplay of sarcomeric proteins and the integrity of thin filaments. PLoS One. 2020;15(3):e0229227. doi:10.1371/journal.pone.0229227.

19. Tucker NR, McLellan MA, Hu D, et al. Novel Mutation in FLNC (Filamin C) Causes Familial Restrictive Cardiomyopathy. Circ Cardiovasc Genet. 2017;10(6):e001780. doi:10.1161/CIRCGENETICS.117.001780.

20. Kiselev A, Vaz R, Knyazeva A, et al. De novo mutations in FLNC leading to early-onset restrictive cardiomyopathy and congenital myopathy. Hum Mutat. 2018;39(9):1161-72. doi:10.1002/humu.23559.

21. Park RC, Little WC, O'Rourke RA. Effect of alteration of left ventricular activation sequence on the left ventricular end-systolic pressure-volume relation in closed-chest dogs. Circ Res. 1985;57(5):706-17. doi:10.1161/01.res.57.5.706.

22. Veltrop RJA, Kukk MM, Topouzidou K, et al. From gene to mechanics: a comprehensive insight into the mechanobiology of LMNA mutations in cardiomyopathy. Cell Commun Signal. 2024;22(1):197. doi:10.1186/s12964-024-01546-5.

23. Simantirakis Ε, Arkolaki E, Kontaraki J, et al. The impact of paced QRS duration on the expression of genes related to contractile function of the left ventricle in chronically paced patients from the right ventricular apex. Hellenic J Cardiol. 2020;61(4):274-8. doi:10.1016/j.hjc.2019.04.011.

24. Arkolaki EG, Simantirakis EN, Kontaraki JE, et al. Alterations in the expression of genes related to contractile function and hypertrophy of the left ventricle in chronically paced patients from the right ventricular apex. Europace. 2015;17(10):1563-70. doi:10.1093/europace/euv071.

25. Shareef MA, Anwer LA, Poizat C. Cardiac SERCA2A/B: therapeutic targets for heart failure. Eur J Pharmacol. 2014;724:1-8. doi:10.1016/j.ejphar.2013.12.018.

26. Hayward C, Banner NR, Morley-Smith A, et al. The Current and Future Landscape of SERCA Gene Therapy for Heart Failure: A Clinical Perspective. Hum Gene Ther. 2015; 26(5):293-304. doi:10.1089/hum.2015.018.

27. Lowes BD, Gilbert EM, Abraham WT, et al. Myocardial gene expression in dilated cardiomyopathy treated with beta-blocking agents. N Engl J Med. 2002;346(18):1357-65. doi:10.1056/NEJMoa012630.

28. Vanderheyden M, Mullens W, Delrue L, et al. Myocardial gene expression in heart failure patients treated with cardiac resynchronization therapy responders versus nonresponders. J Am Coll Cardiol. 2008;51(2):129-36. doi:10.1016/j.jacc.2007.07.087.

29. MacLennan DH, Kranias EG. Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol. 2003;4(7):566-77. doi:10.1038/nrm1151.

30. Haghighi K, Kolokathis F, Gramolini AO, et al. A mutation in the human phospholamban gene, deleting arginine 14, results in lethal, hereditary cardiomyopathy. Proc Natl Acad Sci U S A. 2006;103(5):1388-93. doi:10.1073/pnas.0510519103.

31. Eijgenraam TR, Boukens BJ, Boogerd CJ, et al. Author Correction: The phospholamban p.(Arg14del) pathogenic variant leads to cardiomyopathy with heart failure and is unresponsive to standard heart failure therapy. Sci Rep. 2020;10(1):16710. doi:10.1038/s41598-020-70780-x. Erratum for: Sci Rep. 2020;10(1):9819. doi:10.1038/s41598-020-66656-9.

32. Xu H, Xie X, Li J, et al. Early Right Ventricular Apical Pacing-Induced Gene Expression Alterations Are Associated with Deterioration of Left Ventricular Systolic Function. Dis Markers. 2017;2017:8405196. doi:10.1155/2017/8405196.

33. Mahmood A, Ahmed K, Zhang Y. β-Adrenergic Receptor Desensitization/Down-Regulation in Heart Failure: A Friend or Foe? Front Cardiovasc Med. 2022;9:925692. doi:10.3389/fcvm.2022.925692.

34. Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling — concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol. 2000;35(3):569-82. doi:10.1016/s0735-1097(99)00630-0.

35. Al-Hesayen A, Parker JD. Adverse effects of atrioventricular synchronous right ventricular pacing on left ventricular sympathetic activity, efficiency, and hemodynamic status. Am J Physiol Heart Circ Physiol. 2006;291(5):H2377-9. doi:10.1152/ajpheart.00254.2006.

36. Thames MD. Effect of d- and l-propranolol on the discharge of cardiac vagal C fibers. Am J Physiol. 1980;238(4):H465-70. doi:10.1152/ajpheart.1980.238.4.H465.

37. Lee MA, Dae MW, Langberg JJ, et al. Effects of long-term right ventricular apical pacing on left ventricular perfusion, innervation, function and histology. J Am Coll Cardiol. 1994;24(1):225-32. doi:10.1016/0735-1097(94)90567-3.

38. Kajstura J, Zhang X, Liu Y, et al. The cellular basis of pacing-induced dilated cardiomyopathy. Myocyte cell loss and myocyte cellular reactive hypertrophy. Circulation. 1995;92(8):2306-17. doi:10.1161/01.cir.92.8.2306.

39. Johnson TM, Yu ZX, Ferrans VJ, et al. Reactive oxygen species are downstream mediators of p53-dependent apoptosis. Proc Natl Acad Sci U S A. 1996;93(21):11848-52. doi:10.1073/pnas.93.21.11848.

40. Naspro R, Rossini R, Musumeci G, et al. Antiplatelet therapy in patients with coronary stent undergoing urologic surgery: is it still no man's land? Eur Urol. 2013;64(1):101-5. doi:10.1016/j.eururo.2013.01.026.

41. Passino C, Barison A, Vergaro G, et al. Markers of fibrosis, inflammation, and remodeling pathways in heart failure. Clin Chim Acta. 2015;443:29-38. doi:10.1016/j.cca.2014.09.006.

42. Armstrong PW, Moe GW, Howard RJ, et al. Structural remodelling in heart failure: gelatinase induction. Can J Cardiol. 1994;10(2):214-20.

43. Tomaselli GF. Pacing-induced remodeling of the ventricle: fire in the matrix. J Cardiovasc Electrophysiol. 2010;21(10):1150-2. doi:10.1111/j.1540-8167.2010.01784.x.

44. Birner CM, Ulucan C, Fredersdorf S, et al. Head-to-head comparison of BNP and IL-6 as markers of clinical and experimental heart failure: Superiority of BNP. Cytokine. 2007;40(2):89-97. doi:10.1016/j.cyto.2007.08.009.

45. Tian M, Yuan YC, Li JY, et al. Tumor necrosis factor-α and its role as a mediator in myocardial infarction: A brief review. Chronic Dis Transl Med. 2015;1(1):18-26. doi:10.1016/j.cdtm.2015.02.002.

46. Khurshid S, Epstein AE, Verdino RJ, et al. Incidence and predictors of right ventricular pacing-induced cardiomyopathy. Heart Rhythm. 2014;11(9):1619-25. doi:10.1016/j.hrthm.2014.05.040.

47. Châtelain P, Adamec R, Cox JN. Morphological changes in human myocardium during permanent pacing. Virchows Arch. A Pathol. Anat. Histopathol. 1985;407:43-57.

48. Yamazaki KG, Villarreal FJ. Ventricular pacing-induced loss of contractile function and development of epicardial inflammation. Am J Physiol Heart Circ Physiol. 2011;300(4):H1282-90. doi:10.1152/ajpheart.01079.2010.

49. Kirk JA, Kass DA. Electromechanical dyssynchrony and resynchronization of the failing heart. Circ Res. 2013;113(6):765-76. doi:10.1161/CIRCRESAHA.113.300270.

50. Shibayama J, Yuzyuk TN, Cox J, et al. Metabolic remodeling in moderate synchronous versus dyssynchronous pacing-induced heart failure: integrated metabolomics and proteomics study. PLoS One. 2015;10(3):e0118974. doi:10.1371/journal.pone.0118974.

51. Cha Y-M, Dzeja PP, Shen WK, et al. Failing atrial myocardium: Energetic deficits accompany structural remodeling and electrical instability. Am. J. Physiol.-Heart Circ. Physiol. 2003;284:H1313-H1320.

52. Nahlawi M, Waligora M, Spies SM, et al. Left ventricular function during and after right ventricular pacing. J Am Coll Cardiol. 2004;44(9):1883-8. doi:10.1016/j.jacc.2004.06.074.

53. Li DL, Yoneda ZT, Issa TZ, et al. Prevalence and predictors of pacing-induced cardiomyopathy in young adult patients (<60 years) with pacemakers. J Cardiovasc Electrophysiol. 2021;32(7):1961-8. doi:10.1111/jce.15029.

54. Merchant FM, Hoskins MH, Musat DL, et al. Incidence and Time Course for Developing Heart Failure With High-Burden Right Ventricular Pacing. Circ Cardiovasc Qual Out-comes. 2017;10(6):e003564. doi:10.1161/CIRCOUTCOMES.117.003564.

55. Wilkoff BL, Cook JR, Epstein AE, et al.; Dual Chamber and VVI Implantable Defibrillator Trial Investigators. Dual-chamber pacing or ventricular backup pacing in patients with an implantable defibrillator: the Dual Chamber and VVI Implantable Defibrillator (DAVID) Trial. JAMA. 2002;288(24):3115-23. doi:10.1001/jama.288.24.3115.

56. Wilkoff BL, Kudenchuk PJ, Buxton AE, et al.; DAVID II Investigators. The DAVID (Dual Chamber and VVI Implantable Defibrillator) II trial. J Am Coll Cardiol. 2009;53(10): 872-80. doi:10.1016/j.jacc.2008.10.057.

57. Pastore G, Noventa F, Piovesana P, et al. Left ventricular dyssynchrony resulting from right ventricular apical pacing: relevance of baseline assessment. Pacing Clin Electrophysiol. 2008;31(11):1456-62. doi:10.1111/j.1540-8159.2008.01209.x.

58. Kaye GC, Linker NJ, Marwick TH, et al.; Protect-Pace trial investigators. Effect of right ventricular pacing lead site on left ventricular function in patients with high-grade atrioventricular block: results of the Protect-Pace study. Eur Heart J. 2015;36(14): 856-62. doi:10.1093/eurheartj/ehu304.

59. Lamas GA, Lee K, Sweeney M, et al. The mode selection trial (MOST) in sinus node dysfunction: design, rationale, and baseline characteristics of the first 1000 patients. Am Heart J. 2000;140(4):541-51. doi:10.1067/mhj.2000.109652.

60. Khurshid S, Liang JJ, Owens A, et al. Longer Paced QRS Duration is Associated With Increased Prevalence of Right Ventricular Pacing-Induced Cardiomyopathy. J Cardiovasc Electrophysiol. 2016;27(10):1174-9. doi:10.1111/jce.13045.

61. Kiehl EL, Makki T, Kumar R, et al. Incidence and predictors of right ventricular pacing-induced cardiomyopathy in patients with complete atrioventricular block and preserved left ventricular systolic function. Heart Rhythm. 2016;13(12):2272-8. doi:10.1016/j.hrthm.2016.09.027.


Supplementary files

  • Pacemaker-induced cardiomyopathy (PICM) is a complication of frequent right ventricular pacing.
  • Cases of PICM with preserved left ventricular ejection fraction are insufficiently described.
  • An analysis of the studies on the role of constant right ventricular pacing and its contribution to PICM development is carried out.

Review

For citations:


Andreev D.Yu., Glezer M.G., Kalemberg A.A. Adverse effects of intracardiac dyssynchrony and right ventricular pacing on contractile function and prognosis. Russian Journal of Cardiology. 2024;29(4S):6259. (In Russ.) https://doi.org/10.15829/1560-4071-2024-6259. EDN: RVWBZV

Views: 209


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)