Preview

Russian Journal of Cardiology

Advanced search

Methods of left ventricle shape analysis in assessment and prediction of treatment effect in cardiac dyssynchrony

https://doi.org/10.15829/1560-4071-2024-6189

EDN: RILJYK

Abstract

The review discusses the importance of left ventricular shape analysis for diagnosis, severity assessment and prediction of treatment effectiveness in cardiac dyssynchrony. Various methods for assessing the left ventricle shape are consistently considered, starting from the sphericity index common in clinical practice, moving on to more complex and/or rare indices, then to the author's indices of left ventricular functional geometry, as well as to the methods of geometric morphometrics. The results obtained using left ventricular shape analysis in diagnostics and treatment planning are presented.

About the Authors

R. O. Rokeakh
Institute of Immunology and Physiology
Russian Federation

Yekaterinburg


Competing Interests:

None



T. V. Chumarnaya
Institute of Immunology and Physiology
Russian Federation

Yekaterinburg


Competing Interests:

None



O. E. Solovyova
Institute of Immunology and Physiology
Russian Federation

Yekaterinburg


Competing Interests:

None



References

1. Davidson SM, Padró T, Bollini S, et al. Progress in cardiac research: from rebooting cardiac regeneration to a complete cell atlas of the heart. Cardiovasc Res. 2021;117(10): 2161-74. doi:10.1093/cvr/cvab200.

2. Anto Michel N, Ljubojevic-Holzer S, Bugger H, Zirlik A. Cellular Heterogeneity of the Heart. Front Cardiovasc Med. 2022:9:868466. doi:10.3389/fcvm.2022.868466.

3. Solovyova O, Katsnelson LB, Kohl P, et al. Mechano-electric heterogeneity of the myocardium as a paradigm of its function. Prog Biophys Mol Biol. 2016;120(1-3):249-54. doi:10.1016/j.pbiomolbio.2015.12.007.

4. Karbassi E, Fenix A, Marchiano S, et al. Cardiomyocyte maturation: advances in knowledge and implications for regenerative medicine. Nat Rev Cardiol. 2020;17(6):341-59. doi:10.1038/s41569-019-0331-x.

5. Entcheva E, Kay MW. Cardiac optogenetics: a decade of enlightenment. Nat Rev Cardiol. 2021;18(5):349-67. doi:10.1038/s41569-020-00478-0.

6. Kotadia I, Whitaker J, Roney C, et al. Anisotropic Cardiac Conduction. Arrhythmia Electrophysiol Rev. 2020;9(4):202-10. doi:10.15420/aer.2020.04.

7. Khokhlova A, Balakina-Vikulova N, Katsnelson L, et al. Transmural cellular heterogeneity in myocardial electromechanics. J Physiol Sci. 2018;68(4):387-413. doi:10.1007/s12576-017-0541-0.

8. Konovalov PV, Pravdin SF, Solovyova OE, Panfilov AV. Scroll wave dynamics in a model of the heterogeneous heart. JETP Lett. 2016;104(2):130-4. doi:10.1134/S0021364016140034.

9. Khokhlova A, Konovalov P, Iribe G, et al. The Effects of Mechanical Preload on Transmural Differences in Mechano-Calcium-Electric Feedback in Single Cardiomyocytes: Experiments and Mathematical Models. Front Physiol. 2020;11:171. doi:10.3389/fphys.2020.00171.

10. Katz AM. Physiology of the Heart. Lippincott Williams & Wilkins; 2010. p. 576. ISBN 1608311716.

11. Inoue K, Kawakami H, Akazawa Y, et al. Echocardiographic Assessment of Atrial Function: From Basic Mechanics to Specific Cardiac Diseases. J Cardiovasc Dev Dis. 2022;9(3). doi:10.3390/jcdd9030068.

12. Morariu VI, Arnautu DA, Morariu SI, et al. 2D speckle tracking: a diagnostic and prognostic tool of paramount importance. Eur Rev Med Pharmacol Sci. 2022;26(11):3903-10. doi:10.26355/eurrev_202206_28958.

13. Zhang X, Alexander RV, Yuan J, Ding Y. Computational Analysis of Cardiac Contractile Function. Curr Cardiol Rep. 2022;24(12):1983-94. doi:10.1007/s11886-022-01814-1.

14. Marhasin VS, Solovyova O, Chumarnaya TV, Suhareva SV. Problema neodnorodnosti miokarda. Rossijskij Fiziologicheskij ZHurnal Im IM Sechenova. 2009;95(9):919-43. (In Russ.)

15. Badura K, Buławska D, Dąbek B, et al. Primary Electrical Heart Disease — Principles of Pathophysiology and Genetics. Int J Mol Sci. 2024;25(3). doi:10.3390/ijms25031826.

16. Wright PT, Gorelik J, Harding SE. Electrophysiological Remodeling: Cardiac T-Tubules and ß-Adrenoceptors. Cells. 2021;10(9). doi:10.3390/cells10092456.

17. Hnat T, Veselka J, Honek J. Left ventricular reverse remodelling and its predictors in non-ischaemic cardiomyopathy. ESC Heart Fail. 2022;9(4):2070-83. doi:10.1002/ehf2.13939.

18. Balaban G, Halliday BP, Hammersley D, et al. Left ventricular shape predicts arrhythmic risk in fibrotic dilated cardiomyopathy. Europace. 2022;24(7):1137-47. doi:10.1093/europace/euab306.

19. Frantz S, Hundertmark MJ, Schulz-Menger J, et al. Left ventricular remodelling post-myocardial infarction: pathophysiology, imaging, and novel therapies. Eur Heart J. 2022;43(27):2549-61. doi:10.1093/eurheartj/ehac223.

20. Varzideh F, Kansakar U, Donkor K, et al. Cardiac Remodeling After Myocardial Infarction: Functional Contribution of microRNAs to Inflammation and Fibrosis. Front Cardiovasc Med. 2022;9. doi:10.3389/fcvm.2022.863238.

21. Di Donato M, Dabic P, Castelvecchio S, et al. Left ventricular geometry in normal and post-anterior myocardial infarction patients: sphericity index and "new" conicity index comparisons. Eur J Cardio-Thorac Surg Off J Eur Assoc Cardio-Thorac Surg. 2006;29 Suppl 1:S225-230. doi:10.1016/j.ejcts.2006.03.002.

22. Di Donato M, Castelvecchio S, Kukulski T, et al. Surgical Ventricular Restoration: Left Ventricular Shape Influence on Cardiac Function, Clinical Status, and Survival. Ann Thorac Surg. 2009;87(2):455-61. doi:10.1016/j.athoracsur.2008.10.071.

23. Okhovatian S, Mohammadi MH, Rafatian N. Radisic M. Engineering Models of the Heart Left Ventricle. ACS Biomater Sci Eng. 2022;8(6):2144-60. doi:10.1021/acsbiomaterials.1c00636.

24. Ambale-Venkatesh B, Yoneyama K, Sharma RK, et al. Left ventricular shape predicts different types of cardiovascular events in the general population. Heart Br Card Soc. 2017;103(7):499-507. doi:10.1136/heartjnl-2016-310052.

25. Chumarnaya TV, Solovyova OE, Suhareva SV, Vargina TA. Spatiotemporal heterogeneity of left ventricular wall contraction in normal and ischemic heart disease. I. M. Sechenov Russian Journal of Physiology. 2008;94(11):1217-39. (In Russ.)

26. Chumarnaya TV, Alueva YUS, Kochmasheva VV, et al. Features of the functional geometry of the left ventricle in myocardial diseases with varying degrees of systolic dysfunction. Bulletin of Experimental Biology and Medicine. 2016;162(7):37-41. (In Russ.)

27. Chumarnaya TV, Solovyova OE, Alueva YuS, et al. Functional geometry of the left ventricle in dilated cardiomyopathy before and after resynchronization therapy. Cardiovascular Therapy and Prevention. 2016;15(1):31-9. (In Russ.) doi:10.15829/1728-8800-2016-1-31-39.

28. Chumarnaya TV, Idov EM, Kondrashov KV, et al. Comparative evaluation of a standard echocardiographic examination and a classification model based on the parameters of the functional geometry of the left ventricle in the diagnosis of systolic dysfunction of a transplanted heart. Siberian Journal of Clinical and Experimental Medicine. 2020;35(1):107-16. (In Russ.) doi:10.29001/2073-8552-2020-35-1-107-116.

29. Chumarnaya T, Solovyova O, Alueva Y, et al. Left ventricle functional geometry in cardiac pathology. In: 2015 Computing in Cardiology Conference (CinC). 2015:353-6. doi:10.1109/CIC.2015.7408659.

30. Chumarnaya T, Bykov A, Idov EM, et al. Classification Model of Heart Transplant Outcomes Based on Features of Left Ventricular Functional Geometry. In: 2018 Computing in Cardiology Conference (CinC). 2018;45:1-4. doi:10.22489/CinC.2018.028.

31. Gherbesi E, Gianstefani S, Angeli F, et al. Myocardial strain of the left ventricle by speckle tracking echocardiography: From physics to clinical practice. Echocardiography. 2024;41(1):e15753. doi:10.1111/echo.15753.

32. Taha K, van de Leur RR, Vessies M, et al. Deep neural network-based clustering of deformation curves reveals novel disease features in PLN pathogenic variant carriers. Int J Cardiovasc Imaging. 2023;39(11):2149-61. doi:10.1007/s10554-023-02924-9.

33. Bazoukis G, Thomopoulos C, Tse G, et al. Global longitudinal strain predicts responders after cardiac resynchronization therapy—a systematic review and meta-analysis. Heart Fail Rev. 2022;27(3):827-36. doi:10.1007/s10741-021-10094-w.

34. Antoniou N, Kalaitzoglou M, Tsigkriki L, et al. Speckle Tracking Echocardiography in Patients with Non-Ischemic Dilated Cardiomyopathy Who Undergo Cardiac Resynchronization Therapy: A Narrative Review. Diagnostics. 2024;14(11). doi:10.3390/diagnostics14111178.

35. Bookstein FL. A Course in Morphometrics for Biologists: Geometry and Statistics for Studies of Organismal Form. Cambridge University Press. 2018. doi:10.1017/9781108120418.

36. Laparie M, Vernon P, Cozic Y, et al. Wing morphology of the active flyer Calliphora vicina (Diptera: Calliphoridae) during its invasion of a sub-Antarctic archipelago where insect flightlessness is the rule. Biol J Linn Soc. 2016;119(1):179-93. doi:10.1111/bij.12815.

37. Hennessy RJ, Baldwin PA, Browne DJ, et al. Frontonasal dysmorphology in bipolar disorder by 3D laser surface imaging and geometric morphometrics: Comparisons with schizophrenia. Schizophr Res. 2010;122(1):63-71. doi:10.1016/j.schres.2010.05.001.

38. Klingenberg CP. Methods for studying allometry in geometric morphometrics: a comparison of performance. Evol Ecol. 2022;36(4):439-70. doi:10.1007/s10682-022-10170-z.

39. Madeo A, Piras P, Re F, et al. A New 4D Trajectory-Based Approach Unveils Abnormal LV Revolution Dynamics in Hypertrophic Cardiomyopathy. PLOS ONE. 2015;10(4):e0122376. doi:10.1371/journal.pone.0122376.

40. Piras P, Teresi L, Puddu PE, et al. Morphologically normalized left ventricular motion indicators from MRI feature tracking characterize myocardial infarction. Sci Rep. 2017;7(1):12259. doi:10.1038/s41598-017-12539-5.

41. Piras P, Torromeo C, Evangelista A, et al. Non-invasive prediction of genotype positive— phenotype negative in hypertrophic cardiomyopathy by 3D modern shape analysis. Exp Physiol. 2019;104(11):1688-700. doi:10.1113/EP087551.

42. Rokeakh R, Chumarnaya T, Zubarev S, et al. Statistical Shape Analysis Reveals Specific Features of Left Ventricular Wall Motion in Patients with Chronic Heart Failure. In: 2023 IEEE Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine (CSGB). 2023:231-5. doi:10.1109/CSGB60362.2023.10329847.


Supplementary files

  • The first review of shape analysis methods as applied to cardiology is conducted.
  • The studies of left ventricular shape, regional features of the left ventricular wall motion, and the diagnostic significance of shape features are considered.
  • Using examples from our own studies, the features of left ventricular wall motion heterogeneity with and without pathology are demonstrated, and an approach of left ventricular functional geometry for assessing and diagnosing ventricular contraction pathology is described.
  • A description of geometric morphometrics on echocardiographic data is given.

Review

For citations:


Rokeakh R.O., Chumarnaya T.V., Solovyova O.E. Methods of left ventricle shape analysis in assessment and prediction of treatment effect in cardiac dyssynchrony. Russian Journal of Cardiology. 2024;29(4S):6189. (In Russ.) https://doi.org/10.15829/1560-4071-2024-6189. EDN: RILJYK

Views: 274


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)