Dyssynchrony imaging for cardiac resynchronization therapy
https://doi.org/10.15829/1560-4071-2024-6183
EDN: JKZVXX
Abstract
The article presents an analysis of our own experience in the light of world literature on a wide range of methods for assessing electrical and mechanical cardiac dyssynchrony. Over the past decades, various options have been proposed, ranging from simple and easily performed ones, such as 12-lead electrocardiography, to more complex and expensive methods, such as invasive electroanatomical mapping. Despite promising results, none of the methods has yet become universal, capable of answering all questions. In this regard, the multifaceted process of assessing dyssynchrony continues.
About the Authors
S. V. ZubarevRussian Federation
St. Petersburg; Yekaterinburg
Competing Interests:
Нет
A. I. Mishkina
Russian Federation
Tomsk; Yekaterinburg
Competing Interests:
Нет
S. I. Sazonova
Russian Federation
Tomsk; Yekaterinburg
Competing Interests:
None
References
1. Jaffe LM, Morin DP. Cardiac resynchronization therapy: history, present status, and future directions. Ochsner J. 2014;14(4):596-607.
2. Glikson M, Nielsen JC, Kronborg MB, et al. ESC Scientific Document Group. 2021 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy. Eur Heart J. 2021;42(35):3427-520. doi:10.1093/eurheartj/ehab364.
3. Sipahi I, Chou JC, Hyden M, et al. Effect of QRS morphology on clinical event reduction with cardiac resynchronization therapy: meta-analysis of randomized controlled trials. Am Heart J. 2012;163(2):260-7.e3. doi:10.1016/j.ahj.2011.11.014.
4. Strauss DG, Selvester RH, Wagner GS. Defining left bundle branch block in the era of cardiac resynchronization therapy. Am J Cardiol. 2011;107(6):927-34. doi:10.1016/j.amjcard.2010.11.010.
5. Gold MR, Birgersdotter-Green U, Singh JP, et al. The relationship between ventricular electrical delay and left ventricular remodelling with cardiac resynchronization therapy. Eur Heart J. 2011;32(20):2516-24. doi:10.1093/eurheartj/ehr329.
6. van Everdingen WM, Zweerink A, Cramer MJ, et al. Can We Use the Intrinsic Left Ventricular Delay (QLV) to Optimize the Pacing Configuration for Cardiac Resynchronization Therapy With a Quadripolar Left Ventricular Lead? Circ Arrhythm Electrophysiol. 2018;11(3):e005912. doi:10.1161/CIRCEP.117.005912.
7. van Stipdonk AMW, Ter Horst I, Kloosterman M, et al. QRS Area Is a Strong Determinant of Outcome in Cardiac Resynchronization Therapy. Circ Arrhythm Electrophysiol. 2018;11(12):e006497. doi:10.1161/CIRCEP.118.006497.
8. Emerek K, Friedman DJ, Sørensen PL, et al. Vectorcardiographic QRS area is associated with long-term outcome after cardiac resynchronization therapy. Heart Rhythm. 2019; 16(2):213-9. doi:10.1016/j.hrthm.2018.08.028.
9. Plesinger F, Viscor I, Vondra V, et al. VDI vision — analysis of ventricular electrical dyssynchrony in real-time. 2021 Computing in cardiology (CinC). 2021:5-13. doi:10.23919/CinC53138.2021.9662916.
10. Jurak P, Halamek J, Meluzin J, et al. Ventricular dyssynchrony assessment using ultra-high frequency ECG technique. J Interv Card Electrophysiol. 2017;49(3):245-54. doi:10.1007/s10840-017-0268-0.
11. Curila K, Prochazkova R, Jurak P, et al. Both selective and nonselective His bundle, but not myocardial, pacing preserve ventricular electrical synchrony assessed by ultra-high-frequency ECG. Heart Rhythm. 2020;17(4):607-14. doi:10.1016/j.hrthm.2019.11.016.
12. Curila K, Jurak P, Prinzen F, et al. P. Bipolar anodal septal pacing with direct LBB capture preserves physiological ventricular activation better than unipolar left bundle branch pacing. Front Cardiovasc Med. 2023;10:1140988. doi:10.3389/fcvm.2023.1140988.
13. Rickard J, Jackson K, Gold M, et al. ECG Belt for CRT Response Study Group. Electrocardiogram Belt guidance for left ventricular lead placement and biventricular pacing optimization. Heart Rhythm. 2023;20(4):537-44. doi:10.1016/j.hrthm.2022.11.015.
14. Bank AJ, Brown CD, Burns KV, et al. Electrical dyssynchrony mapping and cardiac resynchronization therapy. J Electrocardiol. 2022;74:73-81. doi:10.1016/j.jelectrocard.2022.08.006.
15. Brown CD, Burns KV, Harbin MM, et al. Cardiac resynchronization therapy optimization in nonresponders and incomplete responders using electrical dyssynchrony mapping. Heart Rhythm. 2022;19(12):1965-73. doi:10.1016/j.hrthm.2022.07.016.
16. Ramanathan C, Ghanem RN, Jia P, et al. Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia. Nat Med. 2004;10(4):422-8. doi:10.1038/nm1011.
17. Nguyên UC, Cluitmans MJM, Strik M, et al. Integration of cardiac magnetic resonance imaging, electrocardiographic imaging, and coronary venous computed tomography angiography for guidance of left ventricular lead positioning. Europace. 2019;21(4):626-35. doi:10.1093/europace/euy292.
18. Webber M, Joy G, Bennett J, et al. Technical development and feasibility of a reusable vest to integrate cardiovascular magnetic resonance with electrocardiographic imaging. J Cardiovasc Magn Reson. 2023;25(1):73. doi:10.1186/s12968-023-00980-7.
19. Varma N. Left ventricular electrical activation during right ventricular pacing in heart failure patients with LBBB: visualization by electrocardiographic imaging and implications for cardiac resynchronization therapy. J Electrocardiol. 2015;48(1):53-61. doi:10.1016/j.jelectrocard.2014.09.002.
20. Zubarev S, Chmelevsky M, Potyagaylo D, et al. Noninvasive electrocardiographic imaging with magnetic resonance tomography in candidates for cardiac resynchronization therapy. Computing in Cardiology. 2019;46:397. doi:10.22489/CinC.2019.397.
21. Ploux S, Lumens J, Whinnett Z, et al. Noninvasive electrocardiographic mapping to improve patient selection for cardiac resynchronization therapy: beyond QRS duration and left bundle branch block morphology. J Am Coll Cardiol. 2013;61(24):2435-43. doi:10.1016/j.jacc.2013.01.093.
22. Ghosh S, Silva JN, Canham RM, et al. Electrophysiologic substrate and intraventricular left ventricular dyssynchrony in nonischemic heart failure patients undergoing cardiac resynchronization therapy. Heart Rhythm. 2011;8(5):692-9. doi:10.1016/j.hrthm.2011.01.017.
23. Parreira L, Tsyganov A, Artyukhina E, et al. N. Non-invasive three-dimensional electrical activation mapping to predict cardiac resynchronization therapy response: site of latest left ventricular activation relative to pacing site. Europace. 2023;25(4):1458-66. doi:10.1093/europace/euad041.
24. Zubarev S, Chmelevsky M, Budanova M, et al. Noninvasive electrophysiological mapping in patients with complete left bundle branch block and different modes of biventricular pacing. Kardiologiia. 2017;57(5):33-7. (In Russ.)
25. Pereira H, Jackson TA, Sieniewicz B, et al. Non-invasive electrophysiological assessment of the optimal configuration of quadripolar lead vectors on ventricular activation times. J Electrocardiol. 2018;51(4):714-9. doi:10.1016/j.jelectrocard.2018.05.006.
26. Sieniewicz BJ, Jackson T, Claridge S, et al. Optimization of CRT programming using non-invasive electrocardiographic imaging to assess the acute electrical effects of multipoint pacing. J Arrhythm. 2019;35(2):267-75. doi:10.1002/joa3.12153.
27. Waddingham PH, Mangual JO, Orini M, et al. Electrocardiographic imaging demonstrates electrical synchrony improvement by dynamic atrioventricular delays in patients with left bundle branch block and preserved atrioventricular conduction. Europace. 2023;25(2):536-45. doi:10.1093/europace/euac224.
28. Arnold AD, Shun-Shin MJ, Keene D, et al. His Resynchronization Versus Biventricular Pacing in Patients With Heart Failure and Left Bundle Branch Block. J Am Coll Cardiol. 2018;72(24):3112-22. doi:10.1016/j.jacc.2018.09.073.
29. Ali N, Arnold AD, Miyazawa AA, et al. Comparison of methods for delivering cardiac resynchronization therapy: an acute electrical and haemodynamic within-patient comparison of left bundle branch area, His bundle, and biventricular pacing. Europace. 2023;25(3):1060-7. doi:10.1093/europace/euac245.
30. Zweerink A, Zubarev S, Bakelants E, et al. His-Optimized Cardiac Resynchronization Therapy With Ventricular Fusion Pacing for Electrical Resynchronization in Heart Failure. JACC Clin Electrophysiol. 2021;7(7):881-92. doi:10.1016/j.jacep.2020.11.029.
31. Pujol-López M, Ferró E, Borràs R, et al. Stepwise application of ECG and electrogram-based criteria to ensure electrical resynchronization with left bundle branch pacing. Europace. 2023;25(6):euad128. doi:10.1093/europace/euad128.
32. Rodriguez LM, Timmermans C, Nabar A, et al. Variable patterns of septal activation in patients with left bundle branch block and heart failure. J Cardiovasc Electrophysiol. 2003;14(2):135-41. doi:10.1046/j.1540-8167.2003.02421.x.
33. Auricchio A, Fantoni C, Regoli F, et al. Characterization of left ventricular activation in patients with heart failure and left bundle-branch block. Circulation. 2004;109(9):1133-9. doi:10.1161/01.CIR.0000118502.91105.F6.
34. Upadhyay GA, Cherian T, Shatz DY, et al. Intracardiac Delineation of Septal Conduction in Left Bundle-Branch Block Patterns. Circulation. 2019;139(16):1876-88. doi:10.1161/CIRCULATIONAHA.118.038648.
35. Rad MM, Blaauw Y, Dinh T, et al. Left ventricular lead placement in the latest activated region guided by coronary venous electroanatomic mapping. Europace. 2015;17(1):84-93. doi:10.1093/europace/euu221.
36. Richardson M, Freemantle N, Calvert MJ, et al.; CARE-HF Study Steering Committee and Investigators. Predictors and treatment response with cardiac resynchronization therapy in patients with heart failure characterized by dyssynchrony: a pre-defined analysis from the CARE-HF trial. Eur Heart J. 2007;28(15):1827-34. doi:10.1093/eurheartj/ehm192.
37. Cazeau S, Bordachar P, Jauvert G, et al. Echocardiographic modeling of cardiac dyssynchrony before and during multisite stimulation: a prospective study. Pacing Clin Electrophysiol. 2003;26(1P2):137-43. doi:10.1046/j.1460-9592.2003.00003.x.
38. Gorcsan J 3rd, Abraham T, Agler DA, et al. American Society of Echocardiography Dyssynchrony Writing Group. Echocardiography for cardiac resynchronization therapy: recommendations for performance and reporting — a report from the American Society of Echocardiography Dyssynchrony Writing Group endorsed by the Heart Rhythm Society. J Am Soc Echocardiogr. 2008;21(3):191-213. doi:10.1016/j.echo.2008.01.003.
39. Chung ES, Leon AR, Tavazzi L, et al. Results of the Predictors of Response to CRT (PROSPECT) trial. Circulation. 2008;117(20):2608-16. doi:10.1161/CIRCULATIONAHA.107.743120.
40. Yingchoncharoen T, Agarwal S, Popović ZB, et al. Normal ranges of left ventricular strain: a meta-analysis. J Am Soc Echocardiogr. 2013;26(2):185-91. doi:10.1016/j.echo.2012.10.008.
41. Kleijn SA, Pandian NG, Thomas JD, et al. Normal reference values of left ventricular strain using three-dimensional speckle tracking echocardiography: results from a multicentre study. Eur Heart J Cardiovasc Imaging. 2015;16(4):410-6. doi:10.1093/ehjci/jeu213.
42. Lazăr-Höcher AI, Cozma D, Cirin L, et al. Comparative Analysis of Apical Rocking and Septal Flash: Two Views of the Same Systole? J Clin Med. 2024;13(11):3109. doi:10.3390/jcm13113109.
43. Yuan Y, Sun J, Jin D, Zhao S. Quantitative left ventricular mechanical dyssynchrony by magnetic resonance imaging predicts the prognosis of dilated cardiomyopathy. Eur J Radiol. 2023;164:110847. doi:10.1016/j.ejrad.2023.110847.
44. Larsen CK, Smiseth OA, Duchenne J, et al. Cardiac Magnetic Resonance Identifies Responders to Cardiac Resynchronization Therapy with an Assessment of Septal Scar and Left Ventricular Dyssynchrony. J Clin Med. 2023;12(22):7182. doi:10.3390/jcm12227182.
45. Zavadovsky KV, Vesnina ZhV, Anashbaev ZhZh, et al. Current status of nuclear cardiology in the Russian Federation. Russian Journal of Cardiology. 2022;27(12):5134. (In Russ.) doi:10.15829/1560-4071-2022-5134.
46. Mansour N, Nekolla SG, Reyes E, et al. Multi-center study of inter-rater reproducibility, image quality, and diagnostic accuracy of CZT versus conventional SPECT myocardial perfusion imaging. Journal of Nuclear Cardiology. 2023;30(2):528-39. doi:10.1007/s12350-022-03054-w.
47. Kuronuma K, Matsumoto N, Van Kriekinge SD, et al. Usefulness of phase analysis on ECG gated single photon emission computed tomography myocardial perfusion imaging. Journal of cardiology. 2023;82(2):87-92. doi:10.1016/j.jjcc.2023.02.008.
48. Marques de Souza Filho E, Tinoco Mesquita C, Altenburg Gismondi R, et al. Are there normal values of phase analysis parameters for left ventricular dyssynchrony in patients with no structural cardiomyopathy?: a systematic review. Nuclear medicine communications. 2019;40(10):980-5. doi:10.1097/MNM.0000000000001068.
49. Nakajima K, Okuda K, Matsuo S, et al. Comparison of phase dyssynchrony analysis using gated myocardial perfusion imaging with four software programs: Based on the Japanese Society of Nuclear Medicine working group normal database. Journal of Nuclear Cardiology. 2017;24(2):611-21. doi:10.1007/s12350-015-0333-y.
50. Titus Ngeno G, Borges-Neto S, Fudim M. Mechanical dyssynchrony in acute heart failure: A marker and a target? J Nucl Cardiol. 2021;28(1):150-2. doi:10.1007/s12350-020-02468-8.
51. Mishkina AI, Saushkin VV, Atabekov TA, et al. The value of cardiac sympathetic activity and mechanical dyssynchrony as cardiac resynchronization therapy response predictors: comparison between patients with ischemic and non-ischemic heart failure. J Nucl Cardiol. 2023;30(1):371-82. doi:10.1007/s12350-022-03046-w.
52. Mishkina AI, Atabekov TA, Shipulin VV, et al. Role of radionuclide assessment of global and regional mechanical dyssynchrony of the heart in prognosis of cardiac resynchronization therapy in patients with heart failure. Russian Journal of Cardiology. 2023;28(8):5497. (In Russ.) doi:10.15829/1560-4071-2023-5497.
53. Abdellatif YA, Onsy AM, Eldemerdash SEH, et al. Prediction of Cardiac Resynchronization Therapy Response Using Quantitative Gated Myocardial Perfusion Imaging. J Innov Card Rhythm Manag. 2023;14(1):5313-21. doi:10.19102/icrm.2023.14014.
54. Peix A, Karthikeyan G, Massardo T, et al. Value of intraventricular dyssynchrony assessment by gated-SPECT myocardial perfusion imaging in the management of heart failure patients undergoing cardiac resynchronization therapy (VISION-CRT). J Nucl Cardiol. 2021;28(1):55-64. doi:10.1007/s12350-018-01589-5.
55. Zou J, Hua W, Su Y, et al. SPECT-Guided LV Lead Placement for Incremental CRT Efficacy: Validated by a Prospective, Randomized, Controlled Study. JACC Cardiovasc Imaging. 2019;12(12):2580-3. doi:10.1016/j.jcmg.2019.
Supplementary files
- There are various methods for imaging electrical and mechanical cardiac dyssynchrony.
- Potential of qualitative and quantitative assessment of dyssynchrony before and after cardiac resynchronization therapy are demonstrated.
- A comprehensive assessment is required, since there is no single universal method for diagnosing dyssynchrony.
Review
For citations:
Zubarev S.V., Mishkina A.I., Sazonova S.I. Dyssynchrony imaging for cardiac resynchronization therapy. Russian Journal of Cardiology. 2024;29(4S):6183. (In Russ.) https://doi.org/10.15829/1560-4071-2024-6183. EDN: JKZVXX