Experimental models of pulmonary embolism
https://doi.org/10.15829/1560-4071-2022-4887
Abstract
Pulmonary embolism (PE) ranks third in the structure of acute cardiovascular diseases. Every year there is a rapid increase in morbidity and mortality from PE. Laboratory biomarkers for PE diagnosis do not have the necessary specificity, and therefore are ineffective. PE requires timely active treatment, in particular for the prevention of serious complications. In this regard, further research is needed to study and search for novel promising biomarkers for the early detection of PE, pathophysiological mechanisms and targets for therapeutic effects. To a large extent, novel data on the pathophysiology of cardiovascular diseases, including PE, scientists receive from experimental studies using animal models. In this review, we summarize the main existing experimental models of PE, describe the principles and methods for modeling this disease. There are following models of PE: intravenous thrombin infusion, adenosine diphosphate-induced PE, PE induction by thromboplastin, recombinant human tissue factor or high molecular weight polyphosphates, collagen/adrenaline-induced PE, ex vivo thrombus intravenous administration, surgical model. This publication also presents our own experience in creating an artificial model of PE in animals using an intravenous thrombus. In our model, confirmation of PE was obtained during pathological examination and an increase in the level of following biomarkers: troponin, N-terminal pro-brain natriuretic peptide, and D-dimer. In this pilot study, a PE model was created to study the pathogenesis and novel treatment options for this disease. To confirm the effectiveness of the model, future studies are required.
Keywords
About the Authors
I. S. MullovaRussian Federation
Competing Interests:
none
A. M. Chaulin
Russian Federation
Competing Interests:
none
A. I. Svechkov
Russian Federation
Competing Interests:
none
T. V. Pavlova
Russian Federation
Competing Interests:
none
L. V. Limareva
Russian Federation
Competing Interests:
none
D. V. Duplyakov
Russian Federation
Competing Interests:
none
References
1. Bokarev IN, Popova LV. Venous thromboembolism and pulmonary embolia. M: MIA, 2013; 512 p. (In Russ.)
2. Chaulin AM, Karslyan LS, Bazyuk EV, et al. Clinical and Diagnostic Value of Cardiac Markers in Human Biological Fluids. Kardiologiia. 2019;59(11):66-75. (In Russ.) doi:10.18087/cardio.2019.11.n414.
3. Beckman MG, Hooper WC, Critchley SE, Ortel TL. Venous thromboembolism: a public health concern. Am J Prev Med. 2010;38(4 Suppl):S495-S501. doi:10.1016/j.amepre.2009.12.017.
4. Schiff GD, Hasan O, Kim S, et al. Diagnostic error in medicine: analysis of 583 physician-reported errors. Arch Intern Med. 2009;169(20):1881-7. doi:10.1001/archinternmed.2009.333.
5. Weinberg AW, Jaff MR, Tapson VF. Pulmonary embolism: an international crisis. Endovascular Today. 2019;3-4.
6. Ishaaya E, Tapson VF. Advances in the diagnosis of acute pulmonary embolism. F1000Res. 2020;9:F1000 Faculty Rev-44. doi:10.12688/f1000research.21347.1.
7. Sweet PH, Armstrong T, Chen J, et al. Fatal pulmonary embolism update: 10 years of autopsy experience at an academic medical center. JRSM Short Rep. 2013;4(9): 2042533313489824. doi:10.1177/2042533313489824.
8. Bartholomew JR. Pulmonary Embolism in the Intensive Care Unit: Therapy in Subpopulations. Crit Care Clin. 2020;36(3):547-60. doi:10.1016/j.ccc.2020.03.001.
9. Kaplovitch E, Shaw JR, Douketis J. Thrombolysis in Pulmonary Embolism: An EvidenceBased Approach to Treating Life-Threatening Pulmonary Emboli. Crit Care Clin. 2020; 36(3):465-80. doi:10.1016/j.ccc.2020.02.004.
10. Dobrovolskiy AB, Titaeva EV. Thrombin formation and its functions in the hemostasis system. Atherothrombosis. 2013;(1):66-72. (In Russ.)
11. Napalkova OS, Emanuel LV, Lapin SV, et al. Thrombin as a key enzyme of hemostasis and its role in atherosclerosis and inflammation. Medical alphabet. 2015;11(3):42-5. (In Russ.)
12. Zolovkina AG, Mamaev AN, Momot AP. Determination of fibrinogen concentration in clinical practice. Polyclinic. 2012;(4-3):16-7. (In Russ.)
13. Kozlovskii VI, Kovtun OM, Serouhova OP, et al. Research methods and clinical significance of platelet aggregation. Focus on spontaneous aggregation. Bulletin of the Vitebsk State Medical University. 2013;4(12):79-91. (In Russ.)
14. Temme S, Grapentin C, Quast C, et al. Noninvasive Imaging of Early Venous Thrombosis by 19F Magnetic Resonance Imaging With Targeted Perfluorocarbon Nanoemulsions. Circulation. 2015;131(16):1405-14. doi:10.1161/CIRCULATIONAHA.114.010962.
15. Brandt M, Giokoglu E, Garlapati V, et al. Pulmonary Arterial Hypertension and Endothelial Dysfunction Is Linked to NADPH Oxidase-Derived Superoxide Formation in Venous Thrombosis and Pulmonary Embolism in Mice. Oxid Med Cell Longev. 2018;2018: 1860513. doi:10.1155/2018/1860513.
16. Heidt T, Ehrismann S, Hövener JB, et al. Molecular Imaging of Activated Platelets Allows the Detection of Pulmonary Embolism with Magnetic Resonance Imaging. Sci Rep. 2016;6:25044. doi:10.1038/srep25044.
17. Kutafina NV, Zavalishina SY. Mechanisms of functioning of vascular-platelet hemostasis. Bulletin of the Peoples’ Friendship University of Russia. Series: ecology and life safety. 2012;1:30-7.
18. Kozlova SN, Golubev AV, Krylova US, et al. Adenosine diphosphate-induced platelet aggregation in patients with coronary artery disease and concomitant anxiety and depression. “Arterial’naya Gipertenziya” (“Arterial Hypertension”). 2009;15(2):181-4. (In Russ.)
19. Przygodzki T, Talar M, Blazejczyk A, et al. Quantification of the Blood Platelet Reacti - vity in the ADP-Induced Model of Non-Lethal Pulmonary Thromboembolism in Mice with the Use of Laser Doppler Flowmetry [published correction appears in PLoS One. 2016;11(2):e0149829]. PLoS One. 2016;11(1):e0146346. doi:10.1371/journal.pone.0146346.
20. Tymvios C, Jones S, Moore C, et al. Real-time measurement of non-lethal platelet thromboembolic responses in the anaesthetized mouse. Thromb Haemost. 2008;99(2): 435-40. doi:10.1160/TH07-07-0479.
21. Béguin S, Lindhout T, Hemker HC. The effect of trace amounts of tissue factor on thrombin generation in platelet rich plasma, its inhibition by heparin. Thromb Haemost. 1989;61(1):25-9.
22. Léon C, Freund M, Ravanat C, et al. Key role of the P2Y(1) receptor in tissue factorinduced thrombin-dependent acute thromboembolism: studies in P2Y(1)-knockout mice and mice treated with a P2Y(1) antagonist. Circulation. 2001;103(5):718-23. doi:10.1161/01.cir.103.5.718.
23. Smyth SS, Reis ED, Väänänen H, et al. Variable protection of beta 3-integrin—deficient mice from thrombosis initiated by different mechanisms. Blood. 2001;98(4):1055-62. doi:10.1182/blood.v98.4.1055.
24. Weiss EJ, Hamilton JR, Lease KE, Coughlin SR. Protection against thrombosis in mice lacking PAR3. Blood. 2002;100(9):3240-4. doi:10.1182/blood-2002-05-1470.
25. Page MJ, Lourenço AL, David T, et al. Non-invasive imaging and cellular tracking of pulmonary emboli by near-infrared fluorescence and positron-emission tomography. Nat Commun. 2015;6:8448. doi:10.1038/ncomms9448.
26. Banno F, Kita T, Fernández JA, et al. Exacerbated venous thromboembolism in mice carrying a protein S K196E mutation. Blood. 2015;126(19):2247-53. doi:10.1182/blood2015-06-653162.
27. Smith SA, Choi SH, Davis-Harrison R, et al. Polyphosphate exerts differential effects on blood clotting, depending on polymer size. Blood. 2010;116(20):4353-9.
28. Lockyer S, Okuyama K, Begum S, et al. GPVI-deficient mice lack collagen responses and are protected against experimentally induced pulmonary thromboembolism. Thromb Res. 2006;118(3):371-80. doi:10.1016/j.thromres.2005.08.001.
29. Zolotnickaya VP. Modeling of pulmonary embolism. SPb. 1995;310. р. 22. (In Russ.) Золотницкая В.П. Моделирование тромбоэмболии легочной артерии (обзор литературы и собственный опыт). СПб., 1995, 22 с.
30. Amosov VI, Zolotnickaya VP, Vlasov TD, Litvinov AP. Experimental modeling of pulmonary embolism. Regional blood circulation and microcirculation. 2003;3(9):54-7. (In Russ.)
31. Ji YQ, Zhang ZH, Lu WX, et al. Establishment of rat model of venous thromboembolism. Zhonghua Yi Xue Za Zhi. 2009;89(4):271-5.
Supplementary files
Review
For citations:
Mullova I.S., Chaulin A.M., Svechkov A.I., Pavlova T.V., Limareva L.V., Duplyakov D.V. Experimental models of pulmonary embolism. Russian Journal of Cardiology. 2022;27(1S):4887. (In Russ.) https://doi.org/10.15829/1560-4071-2022-4887