Integral assessment of congestion in patients with acute decompensated heart failure
https://doi.org/10.15829/1560-4071-2022-4799
Abstract
Aim. To assess the prognostic value of the integral assessment using various modern methods for diagnosing congestion in patients hospitalized with acute decompensated heart failure (ADHF).
Material and methods. This single-center prospective study included 165 patients with ADHF. All patients underwent a standard clinical and paraclinical examination, including assessing NT-proBNP levels, lung ultrasound B-lines, liver transient elastography, bioelectrical impedance vector analysis (BIVA) at admission and discharge. To assess clinical congestion, the Heart Failure Association consensus document scale was used. Long-term clinical outcomes were assessed by telephone survey 1, 3, 6, 12 months after discharge. As an end point, the allcause mortality and readmissions were estimated.
Results. In patients hospitalized with ADHF, at discharge, differences were found in the incidence of residual congestion according to certain paraclinical methods — from 22 to 38%, subclinical — from 14,5 to 27%. When using the integral assessment of stagnation, the incidence of residual and subclinical congestion was 53,6% and 35%, respectively. Patients with residual congestion had more severe symptoms of congestion, compared with those with subclinical congestion. Patients in whom congestion was detected by 4 methods, in contrast to those by 1, 2, and 3 methods, had worse clinical and paraclinical parameters. There was a significant increase in the risk of all-cause mortality and readmission in the presence of congestion, identified by 3 (hazard ratio, 9,4 (2,2-40,6); p<0,001) and 4 methods (hazard ratio, 15,2 (3,3-68,1); p<0,001).
Conclusion. For patients hospitalized with ADHF, integral assessment of residual and subclinical congestion at should be performed at discharge. The introduction of an integral assessment of congestion into routine practice will allow to identify a group of patients with more unfavorable prognostic characteristics in relation to the risk of death and readmissions, as well as to intensify drug therapy and followup at the outpatient stage.
About the Authors
Zh. D. KobalavaRussian Federation
Moscow
Competing Interests:
none
V. V. Tolkacheva
Russian Federation
Moscow
Competing Interests:
none
B. K. Sarlykov
Russian Federation
Moscow
Competing Interests:
none
F. E. Cabello
Russian Federation
Moscow
Competing Interests:
none
M. Bayarsaikhan
Mongolia
Ulaanbaatar
Competing Interests:
none
M. L. Diane
Russian Federation
Moscow
Competing Interests:
none
A. F. Safarova
Russian Federation
Moscow
Competing Interests:
none
M. V. Vatsik-Gorodetskaya
Russian Federation
Moscow
Competing Interests:
none
References
1. McDonagh TA, Metra M, Adamo M, et al. ESC Scientific Document Group, 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC, European Heart Journal. 2021;42(36):3599-726. doi:10.1093/eurheartj/ehab368.
2. Hollenberg SM, Warner Stevenson L, Ahmad T, et al. 2019 ACC Expert Consensus Decision Pathway on Risk Assessment, Management, and Clinical Trajectory of Patients Hospitalized With Heart Failure: A Report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2019;74(15):1966-2011. doi:10.1016/j.jacc.2019.08.001.
3. Mareev VYu, Fomin IV, Ageev FT, et al. Russian Heart Failure Society, Russian Society of Cardiology. Russian Scientific Medical Society of Internal Medicine Guidelines for Heart failure: chronic (CHF) and acute decompensated (ADHF). Diagnosis, prevention and treatment. Kardiologiia. 2018;58(S6):8-164. (In Russ.) doi:10.18087/cardio.2475.
4. Kobalava ZD, Safarova AF, Soloveva AE, et al. Pulmonary congestion assessed by lung ultrasound in decompensated heart failure. Kardiologiya. 2019;59(8):5-14. (In Russ.) doi:10.18087/cardio.2019.8.n534.
5. Alvarez-Garcia J, Rivas-Lasarte M, Benedicto AM, et al. Subclinical Pulmonary Congestion: A Silent And Prevalent Killer At Heart Failure Discharge. J Am Coll Cardiol. 2020;75(11):1093. doi:10.1016/s0735-1097(20)31720-4.
6. Rubio-Gracia J, Demissei BG, ter Maaten JM, et al. Prevalence, predictors and clinical outcome of residual congestion in acute decompensated heart failure. Int J Cardiol. 2018;258:185-91. doi:10.1016/j.ijcard.2018.01.067.
7. Pellicori P, Kaur K, Clark AL. Fluid management in patients with chronic heart failure. Card Fail Rev. 2015;1:90-5. doi:10.15420/cfr.2015.1.2.90.
8. Maisel AS, Duran JM, Wettersten N. Natriuretic peptides in heart failure: atrial and B-type natriuretic peptides. Heart Fail Clin. 2018;14:13-25. doi:10.1016/j.hfc.2017.08.002.
9. Kleiner Shochat M, Fudim M, Shotan A, et al. Prediction of readmissions and mortality in patients with heart failure: lessons from the IMPEDANCE-HF extended trial. ESC Heart Fail. 2018;5(5):788-99. doi:10.1002/ehf2.12330.
10. Gheorghiade M, Follath F, Ponikowski P, et al. European Society of Cardiology; European Society of Intensive Care Medicine. Assessing and grading congestion in acute heart failure: a scientific statement from the acute heart failure committee of the heart failure association of the European Society of Cardiology and endorsed by the European Society of Intensive Care Medicine. Eur J Heart Fail. 2010;12(5):423-33. doi:10.1093/eurjhf/hfq045.
11. Fudim M, Hernandez AF, Felker GM. Role of Volume Redistribution in the Congestion of Heart Failure. J Am Heart Assoc. 2017;6(8). doi:10.1161/JAHA.117.006817.
12. Mullens W, Damman K, Harjola VP, et al. The use of diuretics in heart failure with congestion — a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2019;21(2):137-55. doi:10.1002/ejhf.1369.
13. Cogliati C, Casazza G, Ceriani E, et al. Lung ultrasound and short-term prognosis in heart failure patients. Int J Cardiol. 2016;218:104-8. doi:10.1016/j.ijcard.2016.05.010.
14. Scali MC, Cortigiani L, Simionuc A, et al. Exercise-induced B-lines identify worse functional and prognostic stage in heart failure patients with depressed left ventricular ejection fraction. Eur J Heart Fail. 2017;19(11):1468-78. doi:10.1002/ejhf.776.
15. Simonovic D, Coiro S, Carluccio E, et al. Exercise elicits dynamic changes in extravascular lung water and haemodynamic congestion in heart failure patients with preserved ejection fraction. Eur J Heart Fail. 2018;20(9):1366-9. doi:10.1002/ejhf.1228.
16. Platz E, Merz AA, Jhund PS, et al. Dynamic changes and prognostic value of pulmonary congestion by lung ultrasound in acute and chronic heart failure: a systematic review. Eur J Heart Fail. 2017;19(9):1154-63. doi:10.1002/ejhf.839.
17. Coiro S, Porot G, Rossignol P, et al. Prognostic value of pulmonary congestion assessed by lung ultrasound imaging during heart failure hospitalisation: A two-centre cohort study. Sci Rep. 2016;6:39426. doi:10.1038/srep39426.
18. Gargani L, Pang PS, Frassi F, et al. Persistent pulmonary congestion before discharge predicts rehospitalization
19. Saito Y, Kato M, Nagashima K, et al. Prognostic Relevance of Liver Stiffness Assessed by Transient Elastography in Patients With Acute Decompensated Heart Failure. Circ J. 2018;82(7):1822-9. doi:10.1253/circj.CJ-17-1344.
20. Solovyeva AE, Kobalava ZD, Villevalde SV, et al. Prognostic value of liver stiffness in decompensated heart failure: results of prospective observational transient elastography-based study. Kardiologiia. 2018;58(10S):20-32. (In Russ.) doi:10.18087/cardio.2488.
21. Taniguchi T, Ohtani T, Kioka H, et al. Liver Stiffness Reflecting Right-Sided Filling Pressure Can Predict Adverse Outcomes in Patients With Heart Failure. JACC Cardiovasc Imaging. 2019;12(6):955-64. doi:10.1016/j.jcmg.2017.10.022.
22. Santarelli S, Russo V, Lalle I, et al. Prognostic value of decreased peripheral congestion detected by bioelectrical impedance vector analysis (BIVA) in patients hospitalized for acute heart failure: BIVA prognostic value in acute heart failure. Eur Heart J Acute Cardiovasc Care. 2017;6(4):339-47. doi:10.1177/2048872616641281.
23. Santarelli S, Russo V, Lalle I, et al. Usefulness of combining admission brain natriuretic peptide (BNP) plus hospital discharge bioelectrical impedance vector analysis (BIVA) in predicting 90 days cardiovascular mortality in patients with acute heart failure. Intern Emerg Med. 2017;12(4):559. doi:10.1007/s11739-017-1630-z.
24. Massari F, Iacoviello M, Scicchitano P, et al. Accuracy of bioimpedance vector analysis and brain natriuretic peptide in detection of peripheral edema in acute and chronic heart failure. Heart Lung. 2016;45:319-26. doi:10.1016/j.hrtlng.2016.03.008.
Supplementary files
Review
For citations:
Kobalava Zh.D., Tolkacheva V.V., Sarlykov B.K., Cabello F.E., Bayarsaikhan M., Diane M.L., Safarova A.F., Vatsik-Gorodetskaya M.V. Integral assessment of congestion in patients with acute decompensated heart failure. Russian Journal of Cardiology. 2022;27(2):4799. https://doi.org/10.15829/1560-4071-2022-4799