Experience of using multielectrode catheter systems to perform radiofrequency renal sympathetic denervation in patients with resistant hypertension: immediate procedural effects
https://doi.org/10.15829/1560-4071-2022-4794
Abstract
Aim. To investigate the baseline characteristics of patients with resistant hypertension (HTN) undergoing radiofrequency renal sympathetic denervation (RD) and to determine immediate procedural effects.
Material and methods. During 2018-2019, two series of radiofrequency RD procedures were performed in patients with true resistant HTN using balloon-type (bipolar ablation) or spiral-type (unipolar ablation) multielectorde catheters. The basic demographic, clinical and laboratory characteristics of included patients were assessed. A comparative analysis of two groups was carried out depending on the type of catheter used. Dynamics of office systolic blood pressure (SBP) were assessed as ∆ between the two following timepoints: at screening and at hospital discharge. The safety of radiofrequency RD was assessed. Multiple linear regression was used to determine the factors associated with the ∆ of office SBP after radiofrequency RD.
Results. A total of 48 patients taking 4 (4;6) antihypertensive drugs were sequentially included. Radiofrequency RD was performed with a balloon-type catheter in 27 patients (mean age, 56±12 years old; 12 males) and with a spiral-type catheter in 21 patients (50±14 years old; 8 males). Radiofrequency RD was significantly longer in the spiral catheter group than in balloon one (110 versus 60 minutes, p<0,001), as was the mean number of RF applications (24 versus 12, p=0,002). None of the patients had acute kidney injury after RD (creatinine ∆, -0,6 µmol/L; 95% CI [-3,97; 2,78]). A total of 4 patients had complications (3 femoral arterial pseudoaneurisms, one renal arterial dissection), all of which did not affect the average length of hospital stay (from 4 to 5 days). At discharge, there was a pronounced decrease in office SBP (adjusted for baseline characteristics) with the mean of -26 mm Hg (95% CI [-29; -23]). There were following main factors associated with the office SBP ∆: smoking status (positive), baseline office SBP (positive), and blood glucose (negative).
Conclusion. Radiofrequency RD using multielectode catheters is characterized by favorable short-term hemodynamic effects. We have found novel potential predictors of these effects. Further research will focus on testing initial hypotheses in the long term.
Keywords
About the Authors
M. V. IonovRussian Federation
St. Petersburg
Competing Interests:
none
I. V. Emelyanov
Russian Federation
St. Petersburg
Competing Interests:
none
A. D. Vakhrushev
Russian Federation
St. Petersburg
Competing Interests:
none
A. S. Alieva
Russian Federation
St. Petersburg
Competing Interests:
none
N. G. Avdonina
Russian Federation
St. Petersburg
Competing Interests:
none
Yu. S. Yudina
Russian Federation
St. Petersburg
Competing Interests:
none
D. S. Lebedev
Russian Federation
St. Petersburg
Competing Interests:
none
Е. N. Mikhailov
Russian Federation
St. Petersburg
Competing Interests:
none
A. O. Konradi
Russian Federation
St. Petersburg
Competing Interests:
none
References
1. Polyakov DS, Fomin IV, Belenkov YuN, et al. Chronic heart failure in the Russian Federation: what has changed over 20 years of follow-up? Results of the EPOCH-CHF study. Kardiologiia. 2021;61(4):4-14. (In Russ.) doi:10.18087/cardio.2021.4.n1628.
2. Carey RM, Whelton PK. New findings bearing on the prevention, detection and management of high blood pressure. Curr Opin Cardiol. 2021;36:429-35. doi:10.1097/HCO.0000000000000864.
3. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet. 2021;398:957-80. doi:10.1016/S0140-6736(21)01330-1.
4. GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396:1223-49. doi:10.1016/S0140-6736(20)30752-2.
5. Carey RM, Calhoun DA, Bakris GL, et al. Resistant Hypertension: Detection, Evaluation, and Management: A Scientific Statement From the American Heart Association. Hypertens. 2018;72:e53-90. doi:10.1161/HYP.0000000000000084.
6. Kjeldsen SE, Narkiewicz K, Burnier M, et al. Renal denervation achieved by endovascular delivery of ultrasound in RADIANCE-HTN SOLO or by radiofrequency energy in SPYRAL HTN-OFF and SPYRAL-ON lowers blood pressure. Blood Press. 2018;27:185-7. doi:10.1080/08037051.2018.1486178.
7. Waksman R, Barbash IM, Chan R, et al. Beta radiation for renal nerve denervation: initial feasibility and safety. EuroIntervention. 2013;9:738-44. doi:10.4244/EIJV9I6A118.
8. Fischell TA, Ebner A, Gallo S, et al. Transcatheter Alcohol-Mediated Perivascular Renal Denervation With the Peregrine System: First-in-Human Experience. JACC Cardiovasc Interv. 2016;9:589-98. doi:10.1016/j.jcin.2015.11.041.
9. Schlaich MP, Sobotka PA, Krum H, et al. Renal sympathetic-nerve ablation for uncontrolled hypertension. N Engl J Med. 2009;361:932-4. doi:10.1056/NEJMc0904179.
10. Symplicity HTN-1 Investigators. Catheter-based renal sympathetic denervation for resistant hypertension: durability of blood pressure reduction out to 24 months. Hypertens. 2011;57:911-7. doi:10.1161/HYPERTENSIONAHA.110.163014.
11. Esler MD, Krum H, Schlaich M, et al. Renal sympathetic denervation for treatment of drugresistant hypertension: one-year results from the Symplicity HTN-2 randomized, controlled trial. Circulation. 2012;126:2976-82. doi:10.1161/CIRCULATIONAHA.112.130880.
12. Bhatt DL, Kandzari DE, O’Neill WW, et al. A Controlled Trial of Renal Denervation for Resistant Hypertension. N Engl J Med. 2014;370:1393-401. doi:10.1056/NEJMoa1402670.
13. Mahfoud F, Schmieder RE, Azizi M, et al. Proceedings from the 2nd European Clinical Consensus Conference for device-based therapies for hypertension: state of the art and considerations for the future. Eur Heart J. 2017;38:3272-81. doi:10.1093/eurheartj/ehx215.
14. Schmieder RE, Högerl K, Jung S, et al. Patient preference for therapies in hypertension: a cross-sectional survey of German patients. Clin Res Cardiol. 2019;108:1331-42. doi:10.1007/s00392-019-01468-0.
15. Sharp TE, Lefer DJ. Renal Denervation to Treat Heart Failure. Annu Rev Physiol. 2021;83:39-58. doi:10.1146/annurev-physiol-031620-093431.
16. Zhang W, Zhou Q, Lu Y, et al. Renal Denervation Reduced Ventricular Arrhythmia After Myocardial Infarction by Inhibiting Sympathetic Activity and Remodeling. J Am Heart Assoc. 2018;7:e009938. doi:10.1161/JAHA.118.009938.
17. Ott C, Mahfoud F, Mancia G, et al. Renal denervation in patients with versus without chronic kidney disease: results from the global SYMPLICITY Registry with follow-up data of 3 years. Nephrol Dial Transplant. 2022;37(2):304-10. doi:10.1093/ndt/gfab154.
18. Liang B, Zhao Y-X, Gu N. Renal Denervation for Resistant Hypertension: Where Do We Stand? Curr Hypertens Rep. 2020;22:83. doi:10.1007/s11906-020-01094-6.
19. Danilov NM, Agaeva RA, Matchin YG, et al. Russian medical society on arterial hypertension (RMSAH) Consensus of Experts on the use of radiofrequency denervation of the renal arteries in patients with arterial hypertension. Systemic Hypertension. 2020;17(4):718. (In Russ.) doi:10.26442/2075082X.2020.4.200398.
20. Schmieder RE, Mahfoud F, Mancia G, et al. European Society of Hypertension position paper on renal denervation 2021. J Hypertens. 2021;39:1733-41. doi:10.1097/HJH.0000000000002933.
21. Agaeva RA, Danilov NM, Shchelkova GV, et al. Clinical case: multi-electrode renal denervation for treatment in patient with resistant hypertension. Kardiologicheskii Vestnik. 2017;12(2):76-9. (In Russ.)
22. Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018;39:3021-104. doi:10.1093/eurheartj/ehy339.
23. Vakhrushev AD, Emelyanov IV, Lebedev DS, et al. Radiofrequency renal artery denervation: technical issues of different approaches and safety. “Arterial’naya Gipertenziya” (“Arterial Hypertension”). 2020;26(5):543-51. (In Russ.) doi:10.18705/1607-419X-2020-26-5-543-551.
24. Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120:179-84. doi:10.1159/000339789.
25. Bobkova IN, Vatazin AV, Vetchinnikova ON, et al. Clinical practice guidelines. “Chronic kidney disease (CKD) in adults”. (In Russ.) https://rusnephrology.org/wp-content/uploads/2021/10/kr469.pdf (23.11.2021).
26. Sanders MF, Blankestijn PJ. Chronic kidney disease as a potential indication for renal denervation. Front Physiol. 2016;7:220. doi:10.3389/fphys.2016.00220.
27. Ionov MV, Emelyanov IV, Rotar OP, et al. Risk profile and antihypertensive treatment efficacy in patients referred to the cardiological centre: post-hoc analysis. Translational Medicine. 2017;4(4):5-13. (In Russ.) doi:10.18705/2311-4495-20174-4-5-13.
28. Vogel B, Kirchberger M, Zeier M, et al. Renal sympathetic denervation therapy in the real world: results from the Heidelberg registry. Clin Res Cardiol. 2014;103:117-24. doi:10.1007/s00392-013-0627-5.
29. Jaén Águila F, Mediavilla García JD, Molina Navarro E, et al. Bilateral Renal Artery Stenosis After Renal Denervation. Hypertension. 2014;63:e126-7. doi:10.1161/HYPERTENSIONAHA.113.03065.
30. Harvin HJ, Verma N, Nikolaidis P, et al. ACR Appropriateness Criteria® Renovascular Hypertension. J Am Coll Radiol. 2017;14:S540-9. doi:10.1016/j.jacr.2017.08.040.
31. Vakhrushev AD, Condori Leandro HI, Goncharova NS, et al. Extended renal artery denervation is associated with artery wall lesions and acute systemic and pulmonary hemodynamic changes: a sham-controlled experimental study. Cardiovasc Ther. 2020;2020:8859663. doi:10.1155/2020/8859663.
32. Vakhrushev AD, Сondori Leonardo HI, Goncharova NS, et al. Pulmonary and systemic hemodynamics following multielectrode radiofrequency catheter renal denervation in acutely induced pulmonary arterial hypertension in swine. BioMed Res Int. 2021;2021:4248111. doi:10.1155/2021/4248111.
33. Ionov MV, Emelyanov IV, Yudina YuS, et al. Renal sympathetic denervation in patients with resistant hypertension. Results of long-term prospective follow-up. “Arterial’naya Gipertenziya” (“Arterial Hypertension”). 2021;27(3):318-32. (In Russ.) doi:10.18705/1607-419X-2021-27-3-318-332.
34. Panarina SA, Yudina YuS, Ionov MV, et al. Impact of aggressive blood pressure reduction on kidney function after renal denervation: long-term outcome. “Arterial’naya Gipertenziya” (“Arterial Hypertension”). 2020;26(1):94-106. (In Russ.) doi:10.18705/1607419X-2020-26-1-94-106.
35. Ott C, Janka R, Schmid A, et al. Vascular and renal hemodynamic changes after renal denervation. Clin J Am Soc Nephrol. 2013;8:1195-201. doi:10.2215/CJN.08500812.
36. Liu D, Wang J, Hu H, et al. The Effects of Renal Nerve Denervation on Blood Pressure and Target Organs in Different Hypertensive Rat Models. Int J Hypertens. 2021;2021:e8615253. doi:10.1155/2021/8615253.
37. Liang B, Liang Y, Li R, et al. Effect of renal denervation on long-term outcomes in patients with resistant hypertension. Cardiovasc Diabetol. 2021;20:117. doi:10.1186/s12933-02101309-3.
38. Papademetriou V, Tsioufis CP, Sinhal A, et al. Catheter-based renal denervation for resistant hypertension: 12-month results of the EnligHTN I first-in-human study using a multielectrode ablation system. Hypertens. 2014;64:565-72. doi:10.1161/HYPERTENSIONAHA.114.03605.
39. Zyubanova IV, Falkovskaya AY, Mordovin VF, et al. Erythrocyte membranes betaadrenoreactivity changes after renal denervation in patients with resistant hypertension, relationship with antihypertensive and cardioprotective intervention efficacy. Kardiologiia. 2021;61(8):32-9. (In Russ.) doi:10.18087/cardio.2021.8.n1556.
40. Mahfoud F, Böhm M, Schmieder R, et al. Effects of renal denervation on kidney function and long-term outcomes: 3-year follow-up from the Global SYMPLICITY Registry. Eur Heart J. 2019;40:3474-82. doi:10.1093/eurheartj/ehz118.
41. Messerli FH, Bangalore S, Schmieder RE. Wilder’s principle: pre-treatment value determines post-treatment response. Eur Heart J. 2015;36:576-9. doi:10.1093/eurheartj/ehu467.
42. Mendizábal Y, Llorens S, Nava E. Hypertension in Metabolic Syndrome: Vascular Pathophysiology. Int J Hypertens. 2013;2013:e230868. doi:10.1155/2013/230868.
43. Solini A, Zoppini G, Orsi E, et al. Resistant hypertension in patients with type 2 diabetes: clinical correlates and association with complications. J Hypertens. 2014;32:2401-10. doi:10.1097/HJH.0000000000000350.
44. Kądziela J, Prejbisz A, Kostka-Jeziorny K, et al. Effects of renal sympathetic denervation on blood pressure and glycaemic control in patients with true resistant hypertension: results of Polish Renal Denervation Registry (RDN-POL Registry). Kardiol Pol. 2016;74:961-8. doi:10.5603/KP.a2016.0058.
45. Schmieder R, Delles C, Lauder L, et al. Predictors of blood pressure response after renal denervation beyond pretreatment blood pressure. European Heart Journal. 2021;42(Sup plement_1):ehab724.2379. doi:10.1093/eurheartj/ehab724.2379.
Supplementary files
Review
For citations:
Ionov M.V., Emelyanov I.V., Vakhrushev A.D., Alieva A.S., Avdonina N.G., Yudina Yu.S., Lebedev D.S., Mikhailov Е.N., Konradi A.O. Experience of using multielectrode catheter systems to perform radiofrequency renal sympathetic denervation in patients with resistant hypertension: immediate procedural effects. Russian Journal of Cardiology. 2022;27(2):4794. (In Russ.) https://doi.org/10.15829/1560-4071-2022-4794