Preview

Russian Journal of Cardiology

Advanced search

DIAGNOSTICS OF SIGNIFICANT CORONARY STENOSES IN PATIENTS WITH MYOCARDIAL PERFUSION DISORDERS BY THE DATA OF MONOFOTON EMISSION COMPUTED TOMOGRAPHY OF MYOCARDIUM USING MATHEMATIC INSTRUMENT OF ARTIFICIAL NEURONAL NETWORKS

https://doi.org/10.15829/1560-4071-2015-12-14-19

Abstract

The method described, of non-invasive diagnostics of significant coronary stenosis in patients with disordered myocardial perfusion by the data of monofoton emission computed tomography of myocardium. The method includes utilization of echocardiographic parameters — index of asynergy of the left ventricle and presence of significant mitral regurgitation. It is possible to find coronary stenosis via the presence of parameters obtained with mathematic instrument of artificial neuron nets: presence of lesion (if it is convenient to talk of the presence of lesion) or absence of lesion (if the lesion is absent). Specificity of the method was 93,6%, sensitivity — 68,8%.

About the Authors

V. A. Kuznetsov
Branch of SRI of Cardiology Tyumen Center of Cardiology
Russian Federation
Tyumen


E. I. Yaroslavskaya
Branch of SRI of Cardiology Tyumen Center of Cardiology
Russian Federation
Tyumen


D. V. Krinochkin
Branch of SRI of Cardiology Tyumen Center of Cardiology
Russian Federation
Tyumen


D. V. Teffenberg
Branch of SRI of Cardiology Tyumen Center of Cardiology
Russian Federation
Tyumen


V. N. Kutrunov
Tyumen State University
Russian Federation
Tyumen


S. M. Diachkov
Tyumen State University
Russian Federation
Tyumen


References

1. Hung GU. Diagnosing CAD: additional markers from myocardial perfusion SPECT. J Biomed Res. 2013; 27(6): 467-77.

2. Chen J. The frontiers of nuclear cardiology research. J Biomed Res. 2013; 27(6): 437-8.

3. Klocke FJ, Baird MG, Lorell BH, et al. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging-executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Cardiac Radionuclide Imaging). Circulation. 2003; 108(11): 1404-18.

4. Hung GU. Diagnosing CAD: additional markers from myocardial perfusion SPECT. J Biomed Res. 2013; 27(6): 467-77.

5. Cassar A, Chareonthaitawee P, Rihal CS, et al. Lack of correlation between noninvasive stress tests and invasive coronary vasomotor dysfunction in patients with nonobstructive coronary artery disease. Circ Cardiovasc Interv. 2009; 2(3): 237-44.

6. Kuznetsov VA, Zyrjanov IP, Kolunin GV, et al. Register of coronary angiography procedures©. Certificate of State registration database № 2010620076, registered in Register of database at 1 of February 2010. Russian (Кузнецов В.А., Зырянов И.П., Колунин Г.В. и др. Регистр проведенных операций коронарной ангиографии. Свидетельство о государственной регистрации базы данных № 2010620076, зарегистрировано в Реестре базы данных 1 февраля 2010 года).

7. Galiuto L, Badano L, Fox K, et al. The EAE textbook of echocardiography. European Society of Cardiology 2011; 477.

8. Heijenbrok-Kal MH, Fleischmann KE, Hunink MG. Stress echocardiography, stress singlephoton-emission computed tomography and electron beam computed tomography for the assessment of coronary artery disease: a meta-analysis of diagnostic performance. Am Heart J. 2007; 154(3): 415-23.

9. Akchurin RS, Vasjuk JuA, Karpov JuA, et al. National recommendation for diagnosis and treatment of stable angina. 2008. Cardiovascular Therapy and Prevention 2008; 7(6), Suppl. 4. Russian (Акчурин Р.С., Васюк Ю.А., Карпов Ю.А. и др. Национальные рекомендации по диагностике и лечению стабильной стенокардии. 2008 г. Кардиоваскулярная терапия и профилактика 2008; 7(6), Приложение 4).

10. Neural Networks. STATISTICA Neural Networks: Methodology and techniques of up-to-date data analysis. Ed. B. P. Borovikov. M.: goryachaya liniya. Telecom, 2008: 392 p. Russian (Нейронные сети. STATISTICA Neural Networks: Методология и технологии современного анализа данных. Под ред. В. П. Боровикова. 2-е изд., перераб. и доп. — М.: Горячая линия. Телеком, 2008: 392 с).

11. Herrmann J, Kaski JC, Lerman A. Coronary microvascular dysfunction in the clinical setting: from mystery to reality. Eur Heart J. 2012; 33(22): 2771-82b.

12. Melikian N, Del Furia F, Di Mario C. Physiologic lesion assessment during percutaneous coronary intervention. Cardiol Clin. 2010; 28(1): 31-54.

13. Wetzel DL, Wetzel LH, Wetzel MD, et al. Imminent cardiac risk assessment via optical intravascular biochemical analysis. Analyst. 2009; 134(6): 1099-106.

14. Kuznetsov VA, Yaroslavskaya EI, Gorbatenko EA. Predictors of hemodinamically significant coronary stenoses in patients with disturbed myocardial perfusion based on single-positron emission computed tomography. Klin Med. 2012; 7: 25-30. Russian (Кузнецов В.А., Ярославская Е.И., Горбатенко Е.А. Предикторы гемодинамически значимых коронарных стенозов у пациентов с нарушениями миокардиальной перфузии по данным однофотонной эмиссионной компьютерной томографии миокарда. Клиническая медицина 2012; 7: 25-30).

15. Kuznetsov VA, Yaroslavskaya EI, Gorbatenko EA, et al. Method of diagnosis of significant coronary lesions in patients with abnormalities of myocardial perfusion by (99m)tc-2-methoxy-isobutyl-isonitrile single-positron emission computed tomography. Patent for an invention № 2518536 registered in State register of invention Russian Federation 09.04.2014. Russian (Кузнецов В.А., Ярославская Е.И., Горбатенко Е.А. и др. Способ диагностики значимых коронарных стенозов у пациентов с нарушениями миокардиальной перфузии по данным однофотонной эмиссионной компьютерной томографии миокарда с 99mТс-технитрилом. Патент на изобретение № 2518536, зарегистрирован в Государственном реестре изобретений РФ 09.04.2014).


Review

For citations:


Kuznetsov V.A., Yaroslavskaya E.I., Krinochkin D.V., Teffenberg D.V., Kutrunov V.N., Diachkov S.M. DIAGNOSTICS OF SIGNIFICANT CORONARY STENOSES IN PATIENTS WITH MYOCARDIAL PERFUSION DISORDERS BY THE DATA OF MONOFOTON EMISSION COMPUTED TOMOGRAPHY OF MYOCARDIUM USING MATHEMATIC INSTRUMENT OF ARTIFICIAL NEURONAL NETWORKS. Russian Journal of Cardiology. 2015;(12):14-19. (In Russ.) https://doi.org/10.15829/1560-4071-2015-12-14-19

Views: 499


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)