Preview

Russian Journal of Cardiology

Advanced search

Echocardiographic characteristics of COVID-19 pneumonia survivors three months after hospital discharge

https://doi.org/10.15829/1560-4071-2021-4620

Abstract

Coronavirus disease 2019 (COVID-19) is an infectious disease that affects almost all organs and systems. The main target is the respiratory system, but cardiovascular involvement is also common. Today, it is relevant to study the effect of complicated COVID-19 course on the patient’s cardiovascular system after hospital discharge — in particular, echocardiographic parameters.

Aim. To study the echocardiographic parameters of patients with COVID-19 pneumonia 3 months after discharge from the hospital.

Material and methods. The study included 106 patients with documented COVID-19 pneumonia. Patients underwent a comprehensive examination during hospitalization and 3 months ± 2 weeks after hospital discharge. The mean age of participants was 47±16 years (from 19 to 84 years), while 49% were women.

Results. Three months after discharge, the average body mass index of the subjects was 28,2±5,7 kg/m2. Obesity was noted in 37,1%, cardiovascular diseases — in 52%. According to echocardiography, the prevalence of right ventricular (RV) dilatation was 2,9%, a decrease in tricuspid annular plane systolic excursion (TAPSE) — 9,5%, grade ≥2 tricuspid regurgitation — 1,9%, pulmonary hypertension (pulmonary artery systolic pressure >36 mm Hg) — 3,8%. The mean value of RV global longitudinal myocardial strain (GLMS RV) and global longitudinal myocardial strain (GLES RV) was 19,6±4,5 and 20,6±4,6, respectively. We found moderate correlations between GLMS RV and blood flow time through the left ventricular outflow tract (OT) (r=-0,436), through the mitral valve (r=-0,390; both p<0,0001) and through the RVOT (r=-0,348; р=0,004), with cardiac index (CI) (r=0,316; p=0,009), as well as between GLES RV and blood flow time through the LVOT (r=-0,411; p<0,0001) and RVOT (r=-0,300; p=0,005), and with CI (r=0,302; p=0,004). At the same time, the correlation of GLES RV with RV fractional area change (FAC) was weak (r=-0,283; p=0,007), while there was no correlation with the TAPSE. In addition, correlation of GLMS RV with these parameters were not defined.

Conclusion. Three months after COVID-19 pneumonia, RV strain parameters were shown to have stronger relationships with time characteristics of flows in LVOT and RVOT, as well as with CI, than with such generally accepted characteristics of RV function as FAC and TAPSE.

About the Authors

Е. I. Yaroslavskaya
Tyumen Cardiology Research Center, Tomsk National Research Medical Center
Russian Federation

Tomsk


Competing Interests:

нет



D. V. Krinochkin
Tyumen Cardiology Research Center, Tomsk National Research Medical Center,
Russian Federation

Tomsk


Competing Interests:

none



N. E. Shirokov
Tyumen Cardiology Research Center, Tomsk National Research Medical Center,
Russian Federation

Tomsk


Competing Interests:

none



I. R. Krinochkina
Tyumen State Medical University; City Clinical Hospital № 1
Russian Federation

Tyumen


Competing Interests:

none



E. P. Gultyaeva
Tyumen Cardiology Research Center, Tomsk National Research Medical Center
Russian Federation

Tomsk


Competing Interests:

none



V. D. Garanina
Tyumen Cardiology Research Center, Tomsk National Research Medical Center
Russian Federation

Tomsk


Competing Interests:

none



I. O. Korovina
City Clinical Hospital № 1
Russian Federation

Tyumen


Competing Interests:

none



A. V. Mamarina
Tyumen Cardiology Research Center, Tomsk National Research Medical Center,
Russian Federation

Tomsk


Competing Interests:

none



N. A. Osokina
Tyumen State Medical University
Russian Federation

Tyumen


Competing Interests:

none



N. N. Melnikov
City Clinical Hospital № 2
Russian Federation

Tyumen


Competing Interests:

none



T. А. Trifanova
Tyumen Cardiology Research Center, Tomsk National Research Medical Center,
Russian Federation

Tomsk


Competing Interests:

none



E. A. Gorbatenko
Tyumen Cardiology Research Center, Tomsk National Research Medical Center
Russian Federation

Tomsk


Competing Interests:

none



E. А. Gorbatenko
Tyumen Cardiology Research Center, Tomsk National Research Medical Center,
Russian Federation

Tomsk


Competing Interests:

none



References

1. Maev IV, Shpektor AV, Vasilyeva EYu, et al. Novel coronavirus infection COVID-19: extrapulmonary manifestations. Therapeutic Archive. 2020;8:5-13 (In Russ.) doi:10.26442/00403660.2020.08.000767.

2. Li M, Chen L, Zhang J, et al. The SARS-CoV-2 receptor ACE2 expression of maternalfetal interface and fetal organs by single-cell transcriptome study. PLoS One. 2020;15(4):e0230295. doi:10.1371/journal.pone.0230295.

3. Xiong T, Redwood S, Prendergast B, et al. Coronaviruses and the cardiovascular system: acute and long-term implications. European Heart Journal. 2020;41(19):1798-800. doi:10.1093/eurheartj/ehaa231.

4. Bitsadze VO, Khizroeva JKh, Makatsariya AD, et al. COVID-19, Septic Shock and Syndrome of Disseminated Intravascular Coagulation Syndrome. Part 1. Annals of the Russian Academy of Medical Sciences. 2020;75(2):118-28. (In Russ.) doi:10.15690/vramn1335.

5. Puntmann VO, Carerj ML, Wieters I, et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19). JAMA Cardiology. 2020;5(11):1265-73. doi:10.1001/jamacardio.2020.3557.

6. Radiation diagnostics of coronavirus disease (COVID-19): organization, methodology, interpretation of results: preprint No. CDT 2020-I. Comp. Morozov S.P., Protsenko D.N., Smetanina S.V., etc. The series “Best practices of radiation and instrumental diagnostics”. Issue 65. M.: GBUZ “NPCC DiT DZM”. 2020. 60 p. (In Russ.)

7. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16(3):233-70. doi:10.1093/ehjci/jev014. Erratum in: Eur Heart J Cardiovasc Imaging. 2016;17(4):412. doi:10.1093/ehjci/jew041.

8. Rybakova MK, Mitkov VV, Baldin DG. Echocardiography from M.K. Rybakova: Manual with DVD-ROM “Echocardiography from MK Rybakova”. Ed. 2nd. M.: Publishing house Vidar-M, 2018 (In Russ.) ISBN: 978-5-88429-242-0.

9. Otto CM, Pearlman AS. Textbook of clinical echocardiography. Philadelphia: WB Saunders, 1995. ISBN: 0-7216-6634-5.

10. Voigt JU, Pedrizzetti G, Lysyansky P, et al. Definition for a common standard for 2D speckle tracking echocardiography: a consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. European Heart Journal — Cardiovascular Imaging. 2015;16:1-11 doi:10.1093/ehjci/jeu184.

11. Golukhova EZ, Slivneva IV, Rybka MM, et al. Structural and functional сhanges of the right ventricle in COVID-19 according to echocardiography. Creative Cardiology. 2020;14(3):206-23. (In Russ.) doi:10.24022/1997-3187-2020-14-3-206-223.

12. Golukhova EZ, Slivneva IV, Mamalyga ML, et al. Right ventricular free-wall longitudinal speckle tracking strain as a prognostic criterion of adverse outcomes in patients with pulmonary hypertension: a systematic review and meta-analysis. Russian Journal of Cardiology. 2021;26(4):4417. (In Russ.) doi:10.15829/1560-4071-2021-4417.

13. Dweck MR, Bularga А, Hahn RT, et al. Global evaluation of echocardiography in patients with COVID-19. European Heart Journal — Cardiovascular Imaging. 2020;21(9):949-58. doi:10.1093/ehjci/jeaa178.

14. Krishnamoorthy Р, Croft LB, Ro R, et al. Biventricular strain by speckle tracking echocardiography in COVID-19: findings and possible prognostic implications. Future Cardiology. 2020;17(4):663-7. doi:10.2217/fca-2020-0100.

15. Takigiku K, Takeuchi M, Izumi C, et al. Normal Range of Left Ventricular 2-Dimensional Strain. Japanese Ultrasound Speckle Tracking of the Left Ventricle Study. Circulation Journal. 2012;76(11):2623-32. doi:10.1253/circj.cj-12-0264.

16. Li Y, Wang T, Haines P, et al. Prognostic Value of Right Ventricular Two-Dimensional and Three-Dimensional Speckle-Tracking Strain in Pulmonary Arterial Hypertension: Superiority of Longitudinal Strain over Circumferential and Radial Strain. Journal of the American Society of Echocardiography. 2020;33(8):985-94.e1. doi:10.1016/j.echo.2020.03.015.

17. Baycan OF, Barman HA, Atici A, et al. Evaluation of biventricular function in patients with COVID-19 using speckle tracking echocardiography. The International Journal of Cardiovascular Imaging. 2020;15:1-10. doi:10.1007/s10554-020-01968-5.

18. Stöbe S, Richter S, Seige M, et al. Echocardiographic characteristics of patients with SARS-CoV-2 infection. Clinical Research in Cardiology. 2020;109(12):1549-66. doi:10.1007/s00392-020-01727-5.

19. Medvedofsky D, Koifman E, Jarrett H, et al. Association of right ventricular longitudinal strain with mortality in patients undergoing transcatheter aortic valve replacement. Journal of the American Society of Echocardiography. 2020;33(4):452-60. doi:10.1016/j.echo.2019.11.014.

20. Li Y, Li H, Zhu S, et al. Prognostic value of right ventricular longitudinal strain in patients with COVID-19. Cardiovascular Imaging. 2020;13(11):2287-99. doi:10.1016/j.jcmg.2020.04.014.

21. Golukhova EZ, Slivneva IV, Rybka MM, et al. Right ventricular systolic dysfunction as a predictor of adverse outcome in patients with COVID-19. Kardiologiia. 2020;60(11):16-29. (In Russ.) doi:10.18087/cardio.2020.11.n1303.

22. Pavlyukova EN, Skidan VI, Rosseikin EV, et al. Heart damage and the role of ultrasound in the COVID-19 pandemic. Siberian Journal of Clinical and Experimental Medicine. 2021;36(1):38-48. (In Russ.) doi:10.29001/2073-8552-2021-36-1-38-48.

23. Bleakley C, Singh S, Garfield B, et al. Right ventricular dysfunction in critically ill COVID-19 ARDS. International Journal of Cardiology. 2021;327:251-8. doi:10.1016/j.ijcard.2020.11.043.

24. Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiography assessment of the right heart in adults: а report from the American Society of Echocardiography Endorsed by the European Society of Cardiology, and the Canadian Society of Echocardiography. Journal of the American Society of Echocardiography. 2010;23:685-713. doi:10.1016/j.echo.2010.05.010.

25. Jurcut R, Giusca S, La Gerche A, et al. The echocardiographic assessment of the right ventricle: what to do in 2010? European journal of echocardiography. 2010;11(2):81-96. doi:10.1093/ejechocard/jep234.


Review

For citations:


Yaroslavskaya I., Krinochkin D.V., Shirokov N.E., Krinochkina I.R., Gultyaeva E.P., Garanina V.D., Korovina I.O., Mamarina A.V., Osokina N.A., Melnikov N.N., Trifanova T.А., Gorbatenko E.A., Gorbatenko E.А. Echocardiographic characteristics of COVID-19 pneumonia survivors three months after hospital discharge. Russian Journal of Cardiology. 2021;26(8):4620. (In Russ.) https://doi.org/10.15829/1560-4071-2021-4620

Views: 1301


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)