Risk of heart failure depending on the structure and subclinical target organ damage in patients with hypertension
https://doi.org/10.15829/1560-4071-2021-4257
Abstract
Aim. To determine the risk of heart failure (HF) in patients with hypertension (HTN) depending on the structure of subclinical target organ damage (TOD).
Material and methods. The study included 234 patients with HTN without signs of HF. The mean age was 45,96±8,54 years. The patients underwent echocardiography with an assessment of myocardial mass index, ejection fraction, left ventricular diastolic function. Volumetric sphygmoplethysmography with determination of cardio-ankle vascular index (CAVI1) and carotid-femoral pulse wave velocity (PWVcf). Cystatin C blood concentration with the calculation of the glomerular filtration rate (GFR) was performed. NT-proBNP blood levels was also determined. Patients were divided into 4 groups depending on the presence and structure of subclinical TOD. The first group consisted of 74 (31,6%) patients without documented subclinical TOD; the second group — 99 (42,3%) patients with one subclinical TOD; the third group — 42 (18,0%) patients with two TOD; the fourth group -19 (8,1%) patients with three TOD.
Results. Patients in the groups differed significantly in blood NT-proBNP concentration (p<0,001). As the amount of TOD increased, NT-proBNP increased above the reference value 125 pg/ml (p=0,010). The odds ratio (OR) and relative risk (RR) of HF, determined by NT-proBNP concentration >125 pg/ml, were significantly associated with the TOD structure compared to the group without confirmed TOD (p=0,035, p=0,21, p=0,044, respectively). Correlation analysis revealed direct relationships between the NT-proBNP level and TOD amount (r=0,56; p<0,005), LVH (r=0,33; p<0,005), cystatin C level (r=0,31; p<0,005), CAVI1 and PWVcf (r=0,23; p<0,005 and r=0,26; p<0,005, respectively).
Conclusion. The risk of HF in patients with hypertension depends on the presence and structure of subclinical TOD. With the involvement of one target organ, OR and RR for HF were 4,23 and 3,74, respectively (95% CI for OR, 1,09-19,19; for RR, 1,08-16,03); with the involvement of two target organs — 5,57 (95% CI, 1,2328,51) and 4,70 (95% CI, 1,21-21,84), respectively; with the multiple TOD — 6,31 (95% CI, 1,4-40,83) and 5,19 (95% CI, 1,04-27,95), respectively.
About the Authors
N. A. KoziolovaRussian Federation
Competing Interests: нет
A. I. Chernyavina
Russian Federation
Competing Interests: нет
References
1. Mareev VY, Fomin IV, Ageev FT, et al. Clinical guidelines OSSN-RSC-RNMOT. Heart failure: chronic (CHF) and acute decompensated (ODSN). Diagnosis, prevention and treatment. Kardiologija. 2018;58(S6):8-164. (In Russ.) doi:10.18087/cardio.2475.
2. Ponikowski Р, Voors АА, Anker SD, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). European Heart Journal. 2016;37(27):2129-200. doi:10.1093/eurheartj/ehw128.
3. Kosmala W, Marwick TH. Asymptomatic Left Ventricular Diastolic Dysfunction: Predicting Progression to Symptomatic Heart Failure. JACC Cardiovasc Imaging. 2020;13(1 Pt 2):215-27. doi:10.1016/j.jcmg.2018.10.039.
4. Setti M, Benfari G, Mele D, et al. Discrepancies in Assessing Diastolic Function in Pre-Clinical Heart Failure Using Different Algorithms-A Primary Care Study. Diagnostics (Basel). 2020;10(10):850. doi:10.3390/diagnostics10100850.
5. Gaborit FS, Kistorp C, Kumler T, et al. Early Stages of Obesity-related Heart Failure Are Associated with Natriuretic Peptide Deficiency and an Overall Lack of Neurohormonal Activation: The Copenhagen Heart Failure Risk Study. Global Heart. 2020;15(1):25. doi:10.5334/gh.776.
6. Ndumele CE, Matsushita K, Sang Y, et al. N-Terminal Pro-Brain Natriuretic Peptide and Heart Failure Risk Among Individuals With and Without Obesity: The Atherosclerosis Risk in Communities (ARIC) Study. Circulation. 2016;133(7):631-8. doi:10.1161/CIRCULATIONAHA.115.017298.
7. Okamoto R, Ali Y, Hashizume R, et al. BNP as a Major Player in the Heart-Kidney Connection. Int J Mol Sci. 2019;20(14):3581. doi:10.3390/ijms20143581.
8. Obrezan AG, Kulikov NV. Neuro-humoral disbalance in chronic heart failure: classic and modern perspectives. Russ J Cardiol. 2017;(9):83-92. (In Russ.) doi:10.15829/1560-4071-2017-9-83-92.
9. Iwasaki Y, Tomiyama Н, Shiina K, et al. Possible Mechanisms Underlying Elevated Serum N-Terminal Pro-Brain Natriuretic Peptide in Healthy Japanese Subjects. Circulation Reports Circ Rep. 2019;1:372-7. doi:10.1253/circrep.CR-19-0057.
10. Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Journal of Hypertension. 2018;36:1953-2041. doi:10.1097/HJH.0000000000001940.
11. Courand P-Y, Harbaoui B, Becle C, et al. Plasma NT-proBNP mirrors the deleterious cardiovascular and renal continuum in hypertension. Eur J Prev Cardiol. 2017;24(5):452-9. doi:10.1177/2047487316683070.
12. Chernyavina AI. Assessment of glomerular and tubulointerstitial apparatus state depending on the level of the natriuretic peptide in hypertension patients. Russian Journal of Cardiology. 2020;25(3):3712. (In Russ.) doi:10.15829/1560-4071-2020-3-3712.
13. Gupta DK, Wang TJ. Natriuretic peptides and cardiometabolic health. Circ J. 2015;79(8):1647-55. doi:10.1253/circj.CJ-15-0589.
14. Huang L, Huang L, Yu J, et al. An association between N-terminal pro-brain natriuretic protein level and risk of left ventricular hypertrophy in patients without heart failure. Exp Ther Med. 2020;19(5):3259-66. doi:10.3892/etm.2020.8598.
15. Li K-J. Arterial Wall Properties in Men and Women: Hemodynamic Analysis and Clinical Implications. Sex-Specific Analysis of Cardiovascular Function. Adv Exp Med Biol. 2018;1065:291-306. doi:10.1007/978-3-319-77932-4_19.
16. Nah Е-Н, Kim S-Y, Cho S, et al. Plasma NT-proBNP levels associated with cardiac structural abnormalities in asymptomatic health examinees with preserved ejection fraction: a retrospective cross-sectional study. BMJ Open. 2019;9(4):e026030. doi:10.1136/bmjopen-2018-026030.
17. Vasilyeva МР, Rudenko TE, Kutyrina IM, et al. Cystatin C is a new marker for left ventricular hypertrophy in patients with chronic kidney disease. Therapeutic Archive. 2015;6:17-22. (In Russ.) doi:10.17116/terarkh201587617-22.
Supplementary files
Review
For citations:
Koziolova N.A., Chernyavina A.I. Risk of heart failure depending on the structure and subclinical target organ damage in patients with hypertension. Russian Journal of Cardiology. 2021;26(1):4254. https://doi.org/10.15829/1560-4071-2021-4257