Preview

Russian Journal of Cardiology

Advanced search

Efficacy of sodium-glucose co-transporter-2 inhibitors in patients with heart failure

https://doi.org/10.15829/1560-4071-2021-4235

Abstract

The article analyzes the new results of randomized clinical trials on the use of sodium-glucose co-transporter-2 inhibitors in patients with cardiovascular diseases, heart failure with and without type 2 diabetes. The data of the latest studies (EMPEROR reduced, VERTIS CV, SOLOIST-WHF, SCORED) are presented in more detail.

About the Authors

E. V. Kovalenko
Moscow State University of Medicine and Dentistry
Russian Federation

Competing Interests: not


M. V. Lozhkina
Moscow State University of Medicine and Dentistry
Russian Federation

Competing Interests: not


G. G. Arabidze
Moscow State University of Medicine and Dentistry
Russian Federation

Competing Interests: not


V. G. Kryakushkin
Moscow State University of Medicine and Dentistry
Russian Federation

Competing Interests: not


References

1. Belenkov YuN, Mareev VYu, Ageev FT, et al. True prevalence of CHF in the European part of the Russian Federation (EPOCHA study, hospital stage). Journal of Heart Failure. 2011;12(2):63-8. (In Russ.)

2. Mareev VYu, Fomin IV, Ageev FT, et al. Clinical recommendations of OSSN-RKO-REPAIR. Heart failure: chronic (CHF) and acute decompensated (CHF). Diagnosis, prevention and treatment. Kardiologija. 2018;58(6S):8-158. (In Russ.) doi:10.18087/cardio.2475.

3. Mareev VYu, Belenkov YuN. Chronic heart failure and insulin-dependent diabetes mellitus random relationship or pattern. Therapeutic arkhive. 2003;75(10):1-10. (In Russ.)

4. American Diabetes Association. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes — 2020. Diabetes Care. 2020;43(Supplement 1):S98-S110. doi:10.2337/dc20-S009.

5. Packer M. SGLT2 inhibitors produce cardiorenal benefits by promoting adaptive cellular reprogramming to induce a state of fasting mimicry: a paradigm shift in understanding their mechanism of action. Diabetes Care. 2020;43(3):508-11. doi:10.2337/dci19-0074.

6. Kalra S, Jain A, Ved J, Unnikrishnan AG. Sodium glucose cotransporter 2 inhibition and health benefits: the Robin Hood effect. Indian J Endocrinol Metab. 2016;20(5):725-9. doi:10.4103/2230-8210.183826.

7. Shvarts VJa. A new principle of the treatment of type 2 diabetes mellitus by stimulation of glucosuria. Problemy Endokrinologii. 2012;58(4):54-7. (In Russ.) doi:10.14341/probl201258454-57.

8. Rahman A, Kittikulsuth W, Fujisawa Y, et al. Effects of diuretics on sodium-dependent glucose cotransporter 2 inhibitor-induced changes in blood pressure in obese rats suffering from the metabolic syndrome. Journal of Hypertension. 2016;34(5):893-906. doi:10.1097/HJH.0000000000000871.

9. Balabolkin MI, Beloyartseva MF. the Role of Na+-H+ in the pathogenesis of type 2 diabetes. Diabetes. 2001;2:49-55. (In Russ.)

10. Baartscheer A, Schumacher CA, Wust RC, et al. Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits. Diabetologia. 2017;60(3):568-73. doi:10.1007/s00125-016-4134-x.

11. Packer M, Anker SD, Butler J, et al. Effects of sodium-glucose cotransporter 2 inhibitors for the treatment of patients with heart failure: proposal of a novel mechanism of action. JAMA Cardiol. 2017;2(9):1025-9. doi:10.1001/jamacardio.2017.2275.

12. Lee TM, Chang NC, Lin SZ. Dapagliflozin, a selective SGLT2 inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radic Biol Med. 2017;104:298-310. doi:10.1016/j.freeradbiomed.2017.01.035.

13. Sano M. A new class of drugs for heart failure: SGLT2 inhibitors reduce sympathetic overactivity. J Cardiol. 2018;71(5):471-6. doi:10.1016/j.jjcc.2017.12.004.

14. Filion KB, Lix LM, Yu OHY, et al. Sodium glucose cotransporter 2 inhibitors and risk of major adverse cardiovascular events: multi-database retrospective cohort study. BMJ. 2020;370:m3342. doi:10.1136/bmj.m3342.

15. Fitchett D, Zinman B, Wanner Ch, et al. Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME® trial. Eur. Heart J. 2016;37(19):1526-34. doi:10.1093/eurheartj/ehv728.

16. Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. New England Journal of Medicine. 2017;377(7):644-57. doi:10.1056/NEJMoa1611925.

17. Neal B, Perkovic V, Mahaffey KW, et al. Optimizing the analysis strategy for the CANVAS Program: a prespecified plan for the integrated analyses of the CANVAS and CANVAS-R trials. Diabetes Obes Metab. 2017;19(7):926-35. doi:10.1111/dom.12924.

18. Fralick M, Kim SC, Schneeweiss S, et al. Risk of amputation with canagliflozin across categories of age and cardiovascular risk in three US nationwide databases: cohort study. BMJ. 2020;370:m2812. doi:10.1136/bmj.m2812.

19. Rajasekeran H, Lytvyn Y, Cherney DZ. Sodium-glucose cotransporter 2 inhibition and cardiovascular risk reduction in patients with type 2 diabetes: the emerging role of natriuresis. Kidney Int. 2016;89(3):524-6. doi:10.1016/j.kint.2015.12.038.

20. Kosiborod M, Birkeland KI, Cavender MA, et al.; CVD-REAL Investigators and Study Group. Rates of myocardial infarction and stroke in patients initiating treatment with SGLT2-inhibitors versus other glucose-lowering agents in real-world clinical practice: Results from the CVD-REAL study. Diabetes Obes Metab. 2018;20(8):1983-7. doi:10.1111/dom.13299.

21. Arnott C, Li Q, Kang A, et al. Sodium-glucose cotransporter 2 inhibition for the prevention of cardiovascular events in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. J Am Heart Assoc. 2020;9(3):e014908. doi:10.1161/JAHA.119.014908.

22. Cosentino F, Grant PJ, Aboyans V, et al.; ESC Scientific Document Group. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41(2):255-323. doi:10.1093/eurheartj/ehz486.

23. Kovalenko EV, Lozhkina MV, Markova LI, Arabidze GG. New direction of medical correction of chronic heart failure with a low ejection fraction. International journal of heart and vascular diseases. 2020;8(27):38-49. (In Russ.) doi:10.15829/2311-1623-8-27.

24. McMurray JV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med. 2019;381:1995-2008. doi:10.1056/NEJMoa1911303.

25. ClinicalTrials.gov. EMPagliflozin outcomE tRial in Patients With chrOnic heaRt Failure with Reduced Ejection Fraction (EMPEROR-Reduced). 2020. https://clinicaltrials.gov/ct2/show/NCT03057977. Accessed 10 July 2020.

26. Packer M, Anker SD, Butler J, et al., for the EMPEROR-Reduced Trial Investigators. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N Engl J Med. 2020;383(15):1413-24. doi:10.1056/NEJMoa2022190.

27. Cosentino F, Cannon CP, Cherney DZ, et al. Efficacy of Ertugliflozin on Heart Failure-Related Events in Patients With Type 2 Diabetes Mellitus and Established Atherosclerotic Cardiovascular Disease: Results of the VERTIS CV Trial. Circulation 2020;142(23):2205-15. doi:10.1161/CIRCULATIONAHA.120.050255.

28. Cannon CP, Pratley R, Dagogo-Jack S, et al. Cardiovascular Outcomes With Ertugliflozin in Type 2 Diabetes. N Engl J Med. 2020;383:1425-35. doi:10.1056/NEJMoa2004967.

29. Bhatt DL, Szarek M, Steg PG, et al.; SOLOIST-WHF Trial Investigators. Sotagliflozin in Patients with Diabetes and Recent Worsening Heart Failure. N Engl J Med. 2020. doi:10.1056/NEJMoa2030183.

30. Bhatt DL, Szarek M, Pitt B, et al.; SCORED Investigators. Sotagliflozin in Patients with Diabetes and Chronic Kidney Disease. N Engl J Med. 2020. doi:10.1056/NEJMoa2030186.

31. Seferovic PM, Fragasso G, Petrie M, et al. Heart Failure Association of the European Society of Cardiology update on sodium-glucose co-transporter 2 inhibitors in heart failure. Eur J Heart Fail. 2020;22(11):1984-6. doi:10.1002/ejhf.2026.

32. Russian Society of Cardiology (RSC) 2020 Clinical practice guidelines for Chronic heart failure. Russian Journal of Cardiology. 2020;25(11):4083. (In Russ.) doi:10.15829/29/1560-4071-2020-4083.

33. Inzucchi SE, Docherty KF, K0ber L, et al, on behalf of the DAPA-HF Investigators and Committees. Dapagliflozin and the Incidence of Type 2 Diabetes in Patients With Heart Failure and Reduced Ejection Fraction: An Exploratory Analysis From DAPA-HF. Diabetes Care. 2021;44(2):586-594. doi:10.2337/dc20-1675.

34. Vitale RJ, Valtis YK, McDonnell ME, et al. Euglycemic diabetic ketoacidosis with COVID-19 infection in patients with type 2 diabetes taking SGLT2 inhibitors. AACE Clinical Case Reports. 2020. doi:10.1016/j.aace.2020.11.019.


Supplementary files

Review

For citations:


Kovalenko E.V., Lozhkina M.V., Arabidze G.G., Kryakushkin V.G. Efficacy of sodium-glucose co-transporter-2 inhibitors in patients with heart failure. Russian Journal of Cardiology. 2021;26(1):4235. (In Russ.) https://doi.org/10.15829/1560-4071-2021-4235

Views: 737


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)