Preview

Russian Journal of Cardiology

Advanced search

Transcriptome analysis of skeletal muscles revealed the effect of exercise on the molecular mechanisms regulating muscle growth and metabolism in patients with heart failure

https://doi.org/10.15829/1560-4071-2020-4132

Abstract

Aim. Heart failure (HF) is accompanied by skeletal muscle atrophy and exercise intolerance. The aim was to study the molecular mechanisms underlying the therapeutic effect of personalized exercise in patients with HF.

Material and methods. RNA sequencing obtained from skeletal muscle biopsies before and after a 12-week exercise course was used to identify changes in gene expression and signaling pathways induced by the physical rehabilitation program for patients with HF.

Results. We have shown that personalized exercise program in patients with HF stimulates the activation of molecular pathways regulating the differentiation and functioning of skeletal muscles: commitment of muscle progenitor cells; mechanisms regulating the calcium release and sensitivity of myofibrillar contraction, electrical excitability of the muscle membrane, synaptic vesicle proton gradient creation, maintenance of electrochemical gradients of Na+ /K+ . Also, the analysis of differentially expressed genes revealed an increase in the expression of transcription factors MyoD and MEF2, which are responsible for the differentiation of muscle stem cells, and sarcomeric genes MYOM1, MYOM2, MYH7. Along with this, we observed activation of the CYR61 expression — a potential prognostic biomarker for HF patients.

Conclusion. Our data show that the beneficial effect of personalized aerobic exercise in patients with HF depends, at least in part, on an improvement in the physiological and biochemical parameters of skeletal muscle.

About the Authors

O. A. Ivanova
Almazov National Medical Research Center; ITMO University
Russian Federation
St. Petersburg


E. V. Ignatieva
Almazov National Medical Research Center
Russian Federation
St. Petersburg


T. A. Lelyavina
Almazov National Medical Research Center
Russian Federation
St. Petersburg


V. L. Galenko
Almazov National Medical Research Center
Russian Federation
St. Petersburg


M. Yu. Komarova
Almazov National Medical Research Center
Russian Federation
St. Petersburg


M. A. Bortsova
Almazov National Medical Research Center
Russian Federation
St. Petersburg


M. Yu. Sitnikova
Almazov National Medical Research Center
Russian Federation
St. Petersburg


A. A. Kostareva
Almazov National Medical Research Center; Karolinska Institutet
Russian Federation

Department of Women’s and Children’s Health Karolinska Institutet, Stockholm {Sweden); St. Petersburg; 



A. A. Sergushichev
ITMO University
Russian Federation
St. Petersburg


R. I. Dmitrieva
Almazov National Medical Research Center
Russian Federation
St. Petersburg


References

1. Zizola C, Schulze PC. Metabolic and structural impairment of skeletal muscle in heart failure. Heart Fail. Rev. 2013;18:623-30. doi:10.1007/s10741-012-9353-8.

2. Springer J, Springer J-I, Anker SD. Muscle wasting and sarcopenia in heart failure and beyond: update 2017. ESC Hear. Fail. 2017;4:492-8. doi:10.1002/ehf2.12237.

3. Dmitrieva RI, Lelyavina TA, Komarova MY, et al. Skeletal muscle resident progenitor cells coexpress mesenchymal and myogenic markers and are not affected by chronic heart failure-induced dysregulations. Stem Cells Int. 2019;1-11. doi:10.1155/2019/5690345.

4. Agostoni P, Dumitrescu D. How to perform and report a cardiopulmonary exercise test in patients with chronic heart failure. Int. J. Cardiol. 2019;288:107-13. doi:10.1016/j.ijcard.2019.04.053.

5. Wagner J, Agostoni P, Arena R, et al. The Role of Gas Exchange Variables in Cardiopulmonary Exercise Testing for Risk Stratification and Management of Heart Failure with Reduced Ejection Fraction. Am Heart J. 2018;202:116-26. doi:10.1016/j.ahj.2018.05.009.

6. Lelyavina T, Sitnikova M, Shlyakhto E. Diagnostic and prognostic value of lactate threshold and pH — threshold determination during cardiopulmonary testing in patients with chronic heart failure. Br J Med. Med. Res. 2015;5:289-96. doi:10.9734/BJMMR/2015/12920.

7. Lelyavina T, Sitnikova M, Galenko V, et al. Аerobic training in heart failure patients with optimal heart failure therapy — a prospective randomized study. World J. Pharm. Res. 2017;6:59-67.

8. Galenko VL, Lelyavina TA, Sitnikova MY. Response predictors for physical training HFrEF patients. Kardiologiia. 2018;58:22-8. (In Russ.). doi:10.18087/cardio.2434.

9. Lelyavina TA, Galenko VL, Ivanova AO, et al. Clinical Response to Personalized Exercise Therapy in Heart Failure Patients with Reduced Ejection Fraction Is Accompanied by Skeletal Muscle Histological Alterations. International journal of molecular sciences. 2019;20(21):551. doi:10.3390/ijms20215514.

10. Sergushichev AA. An algorithm for fast preranked gene set enrichment analysis using cumulative statistic calculation. bioRxiv. 2016;60012. doi:10.1101/060012.

11. Popov DV, Makhnovskii PA, Shagimardanova EI, et al. Contractile activity-specific transcriptome response to acute endurance exercise and training in human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 2019;316:E605-E614. doi:10.1152/ajpendo.00449.2018.

12. Yoshida T, Delafontaine P. An Intronic Enhancer Element Regulates Angiotensin II Type 2 Receptor Expression during Satellite Cell Differentiation, and Its Activity Is Suppressed in Congestive Heart Failure. J Biol Chem. 2016;291:25578-90. doi:10.1074/jbc.M116.752501.

13. Hendrickse P, Degens H. The role of the microcirculation in muscle function and plasticity. J. Muscle Res. Cell Motil. 2019;40:127-40. doi:10.1007/s10974-019-09520-2.

14. Schiaffino S, Dyar KA, Ciciliot S, et al. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 2013;280:4294-314. doi:10.1111/febs.12253.

15. Dmitrieva RI, Revittser AV, Klukina MA, et al. Functional properties of bone marrow derived multipotent mesenchymal stromal cells are altered in heart failure patients, and could be corrected by adjustment of expansion strategies. Aging (Albany. NY). 2015;7:14-25. doi:10.18632/aging.100716.

16. Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17:162-84. doi:10.1016/j.cmet.2012.12.012.

17. Binder RK, Wonisch M, Corra U, et al. Methodological approach to the first and second lactate threshold in incremental cardiopulmonary exercise testing. Eur. J. Prev. Cardiol. 2008;15:726-34. doi:10.1097/HJR.0b013e328304fed4.

18. Dickinson JM, D’Lugos AC, Naymik MA, et al. Transcriptome response of human skeletal muscle to divergent exercise stimuli. J. Appl. Physiol. 2018;124:1529-40. doi:10.1152/japplphysiol.00014.2018.

19. Muppala S, Xiao R, Krukovets I, et al. Thrombospondin-4 mediates TGF-β-induced angiogenesis. Oncogene. 2017;36:5189-98. doi:10.1038/onc.2017.140.

20. Lavine KJ, Sierra OL. Skeletal muscle inflammation and atrophy in heart failure. Heart Fail. Rev. 2017;22:179-89. doi:10.1007/s10741-016-9593-0.

21. Zhao J, Zhang C, Liu J, et al. Cellular Physiology and Biochemistry Cellular Physiology and Biochemistry Prognostic Significance of Serum Cysteine-Rich Protein 61 in Patients with Acute Heart Failure. Cell Physiol Biochem. 2018;48:1177-87. doi:10.1159/000491984.

22. Liu R, Molkentin JD. Regulation of cardiac hypertrophy and remodeling through the dualspecificity MAPK phosphatases (DUSPs). J Mol Cell Cardiol. 2016;101:44-9. doi:10.1016/j.yjmcc.2016.08.018.

23. Li C, Wang T, Zhang C, et al. Quercetin attenuates cardiomyocyte apoptosis via inhibition of JNK and p38 mitogen-activated protein kinase signaling pathways. Gene. 2016;577:275-80. doi:10.1016/j.gene.2015.12.012.

24. Takeshima H, Kobayashi N, Koguchi W, et al. Cardioprotective effect of a combination of Rho-kinase inhibitor and P38 MAPK inhibitor on cardiovascular remodeling and oxidative stress in Dahl rats. J. Atheroscler. Thromb. 2012;19:326-36. doi:10.5551/jat.11114.

25. Cosgrove BD, Gilbert PM, Porpiglia E, et al. Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat. Med. 2014;20:255-64. doi:10.1038/nm.3464.

26. Bernet JD, Doles JD, Hall JK, et al. P38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat. Med. 2014;20:265-71. doi:10.1038/nm.3465.

27. Popov DV, Lysenko EA, Bokov RO, et al. Effect of aerobic training on baseline expression of signaling and respiratory proteins in human skeletal muscle. Physiol. Rep. 2018;6(17):e13868. doi:10.14814/phy2.13868.


Review

For citations:


Ivanova O.A., Ignatieva E.V., Lelyavina T.A., Galenko V.L., Komarova M.Yu., Bortsova M.A., Sitnikova M.Yu., Kostareva A.A., Sergushichev A.A., Dmitrieva R.I. Transcriptome analysis of skeletal muscles revealed the effect of exercise on the molecular mechanisms regulating muscle growth and metabolism in patients with heart failure. Russian Journal of Cardiology. 2020;25(10):4132. (In Russ.) https://doi.org/10.15829/1560-4071-2020-4132

Views: 857


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)