Preview

Russian Journal of Cardiology

Advanced search

Relationship of plasma aldosterone levels and carbohydrate metabolism in heart failure with preserved ejection fraction

https://doi.org/10.15829/1560-4071-2021-3991

Abstract

Aim. To determine the relationship between the blood aldosterone levels and parameters of carbohydrate metabolism in patients with heart failure (HF) with preserved ejection fraction (HFpEF).

Material and methods. This cross-sectional study included 158 patients with stable HFpEF. HFpEF was established in the presence of symptoms and/or signs of HF, left ventricular ejection fraction >50%, increased blood NT-proBNP levels, and characteristic structural cardiac changes according to echocardiography. The study did not include patients with primary hyperaldosteronism and those taking mineralocorticoid receptor antagonists within the previous 6 weeks. In all patients, the blood aldosterone and carbohydrate metabolism parameters were assessed. The aldosterone levels were determined by the enzyme immunoassay and the concentration of 40-160 pg/ml was considered the reference values. Diabetes was diagnosed in the following cases: history of diabetes, treatment with antidiabetic drugs, blood glucose level ≥7,0 mmol/L in two samples or glycated hemoglobin (HbA1c) >6,5%. Prediabetes was recorded if the blood glucose level in a patient without diabetes was in the range of ≥5,6 mmol/L and<7,0 mmol/L.

Results. In 99 patients (62,7%, group 1), the aldosterone levels were within the normal range, while in the remaining 59 patients (37,3%, group 2), it exceeded the upper limit. Patients with hyperaldosteronemia compared with those with normal aldosterone levels had significantly higher fasting plasma glucose levels (6,60 (6,00-7,90) mmol/L vs 5,80 (5,25-6,80) mmol/L, p<0,001) and HOMA value (5,86±1,12 vs 4,46±1,02, p=0,01). HbA1c levels did not differ significantly between groups. Patients of the 2nd group more often suffered from diabetes (39,0% vs 19,2%, p<0,001) and hyperglycemia in general (89,8% vs 61,6%, p=0,011) compared with patients of the 1st group. Correlation analysis showed a significant relationship between the level of aldosterone and blood glucose (r=0,29), HbA1c (r=0,17) and HOMA (r=0,23) values. After standardization by age, HF class, body mass index, blood pressure, cholesterol and blood potassium levels in multivariate analysis, the presence of hyperaldosteronemia was significantly correlated with diabetes (odds ratio, 1,64, 95% confidence interval, 1,14-3,32, p=0,013) and hyperglycemia (odds ratio, 2,84, 95% confidence interval, 1,94-14,2, p=0,008). Conclusion. The development of secondary hyperaldosteronism in patients with HFpEF is associated with a significant increase in the risk of hyperglycemia and diabetes.

About the Author

A. N. Shevelok
M. Gorky Donetsk National Medical University; V.K. Gusak Institute of Urgent and Reconstructive Surgery
Ukraine

Shevelyok Anna N.

Donetsk, Ukraine (DPR)


Competing Interests: not


References

1. Dunlay SM, Givertz MM, Aguilar D, et al. Type 2 Diabetes Mellitus and Heart Failure: A Scientific Statement From the American Heart Association and the Heart Failure Society of America: This statement does not represent an update of the 2017 ACC/AHA/ HFSA heart failure guideline update. Circulation. 2019;140(7):e294-e324. doi:10.1161/CIR.0000000000000691.

2. Goode KM, John J, Rigby AS, et al. Elevated glycated haemoglobin is a strong predictor of mortality in patients with left ventricular systolic dysfunction who are not receiving treatment for diabetes mellitus. Heart Br Card Soc. 2009;95(11):917-23. doi:10.1136/hrt.2008.156646.

3. Vatutin NT, Shevelyok AN. The role of hyperaldosteronism and prospects of using aldosterone antagonists in resistant arterial hypertension. Journal of the National Academy of Medical Sciences of Ukraine. 2014;20(1):43-51. (In Russ.)

4. Remde H, Hanslik G, Rayes N, et al. Glucose Metabolism in Primary Aldosteronism. Horm Metab Res Horm Stoffwechselforschung Horm Metab. 2015;47(13):987-93. doi:10.1055/s-0035-1565208.

5. Colussi G, Catena C, Lapenna R, et al. Insulin resistance and hyperinsulinemia are related to plasma aldosterone levels in hypertensive patients. Diabetes Care. 2007;30(9):2349-54. doi:10.2337/dc07-0525.

6. Wakino S, Minakuchi H, Miya K, et al. Aldosterone and insulin resistance: vicious combination in patients on maintenance hemodialysis. Ther Apher Dial. 2018;22(2):142-51. doi:10.1111/1744-9987.12632.

7. Goodfriend TL, Egan BM, Kelley DE. Plasma aldosterone, plasma lipoproteins, obesity and insulin resistance in humans. Prostaglandins Leukot Essent Fatty Acids. 1999;60(5-6):401-5. doi:10.1016/s0952-3278(99)80020-9.

8. Wu V-C, Yang S-Y, Lin J-W, et al. Kidney impairment in primary aldosteronism. Clin Chim Acta Int J Clin Chem. 2011;412(15-16):1319-25. doi:10.1016/j.cca.2011.02.018.

9. Boyer JK, Thanigaraj S, Schechtman KB, et al. Prevalence of ventricular diastolic dysfunction in asymptomatic, normotensive patients with diabetes mellitus. Am J Cardiol. 2004;93(7):870-5. doi:10.1016/j.amjcard.2003.12.026.

10. Kobalava ZD, Yeshniyazov NV, Medovchshikov VV, et al. Type 2 Diabetes Mellitus and Heart Failure: Innovative Possibilities for Management of Prognosis. Kardiologiia. 2019;59(4):76-87. (In Russ.) doi:10.18087/cardio.2019.4.10253.

11. Lau T, Carlsson P-O, Leung PS. Evidence for a local angiotensin-generating system and dose-dependent inhibition of glucose-stimulated insulin release by angiotensin II in isolated pancreatic islets. Diabetologia. 2004;47(2):240-8. doi:10.1007/s00125-003-1295-1.

12. Andraws R, Brown DL. Effect of inhibition of the renin-angiotensin system on development of type 2 diabetes mellitus (meta-analysis of randomized trials). Am J Cardiol. 2007;99(7):1006-12. doi:10.1016/j.amjcard.2006.10.068.

13. Leung PS. The physiology of a local renin-angiotensin system in the pancreas. J Physiol. 2007;580(Pt 1):31-7. doi:10.1113/jphysiol.2006.126193.

14. Zavatta G, Casadio E, Rinaldi E, et al. Aldosterone and type 2 diabetes mellitus. Horm Mol Biol Clin Investig. 2016;26(1):53-9. doi:10.1515/hmbci-2015-0065.

15. Luther JM. Effects of aldosterone on insulin sensitivity and secretion. Steroids. 2014;91:54-60. doi:10.1016/j.steroids.2014.08.016.

16. Kraus D, Jager J, Meier B, et al. Aldosterone inhibits uncoupling protein-1, induces insulin resistance, and stimulates proinflammatory adipokines in adipocytes. Horm Metab Res Horm Stoffwechselforschung Horm Metab. 2005;37(7):455-59. doi:10.1055/s-2005-870240.

17. Min SH, Kim SH, Jeong IK, et al. Independent association of serum aldosterone level with metabolic syndrome and insulin resistance in Korean Adults. Korean Circ J. 25. 2018;48(3):198-208. doi:10.4070/kcj.2017.0200.

18. Baudrand R, Gupta N, Garza AE, et al. Caveolin 1 modulates aldosterone-mediated 26. pathways of glucose and lipid homeostasis. J Am Heart Assoc. 2016;5(10):e003845. doi:10.1161/JAHA.116.003845.

19. Ingelsson E, Pencina MJ, Tofler GH, et al. Multimarker approach to evaluate the 27. incidence of the metabolic syndrome and longitudinal changes in metabolic risk factors: the Framingham Offspring Study. Circulation. 2007;116(9):984-92. doi:10.1161/CIRCULATIONAHA.107.708537.

20. Kidambi S, Kotchen JM, Grim CE, et al. Association of Adrenal Steroids With Hypertension and the Metabolic Syndrome in Blacks. Hypertension. 2007;49(3):704-11. doi:10.1161/01.HYP.0000253258.36141.c7.

21. Giacchetti G, Sechi LA, Rilli S, et al. The renin-angiotensin-aldosterone system, glucose metabolism and diabetes. Trends Endocrinol Metab. 2005;16(3):120-6. doi:10.1016/j.tem.2005.02.003.

22. Giacchetti G, Turchi F, Boscaro M, et al. Management of primary aldosteronism: its complications and their outcomes after treatment. Curr Vasc Pharmacol. 2009;7(2):244-9. doi:10.2174/157016109787455716.

23. Tsurutani Y, Sugisawa C, Ishida A, et al. Aldosterone excess may inhibit insulin secretion: A comparative study on glucose metabolism pre- and post-adrenalectomy in patients with primary aldosteronism. Endocr J. 2017;64(3):339-46. doi:10.1507/endocrj.EJ16-0500.

24. Watanabe D, Yatabe M, Ichihara A. Evaluation of insulin sensitivity and secretion in primary aldosteronism. Clin Exp Hypertens N Y N 1993. 2016;38(7):613-7. doi:10.1080/10641963.2016.1182176.

25. American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care. 2010;33 Suppl 1(Suppl 1):S62-9. doi:10.2337/dc10-S062.

26. Nayyar M, Lastra G, Acevedo CM. Mineralocorticoids and cardiovascular disease in females with insulin resistance and obesity. Curr Hypertens Rep. 2018;20(10):88. doi:10.1007/s11906-018-0887-6.

27. Gastaldelli A, Gaggini M, DeFronzo RA. Role of Adipose Tissue Insulin Resistance in the Natural History of Type 2 Diabetes: Results From the San Antonio Metabolism Study. Diabetes. 2017;66(4):815-22. doi:10.2337/db16-1167.

28. Schutten MTJ, Houben AJHM, de Leeuw PW, et al. The Link Between Adipose Tissue Renin-Angiotensin-Aldosterone System Signaling and Obesity-Associated Hypertension. Physiology. 2017;32(3):197-209. doi:10.1152/physiol.00037.2016.

29. Briones AM, Nguyen Dinh Cat A, Callera GE, et al. Adipocytes produce aldosterone through calcineurin-dependent signaling pathways: implications in diabetes mellitus-associated obesity and vascular dysfunction. Hypertens Dallas Tex 1979. 2012;59(5):1069-78. doi:10.1161/HYPERTENSIONAHA.111.190223.


Supplementary files

Review

For citations:


Shevelok A.N. Relationship of plasma aldosterone levels and carbohydrate metabolism in heart failure with preserved ejection fraction. Russian Journal of Cardiology. 2021;26(1):3991. (In Russ.) https://doi.org/10.15829/1560-4071-2021-3991

Views: 834


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)