Azilsartan medoxomil for improving insulin resistance and adipokine levels in hypertension in comparison with angiotensin-converting enzyme inhibitors
https://doi.org/10.15829/1560-4071-2020-3767
Abstract
Aim. To assess azilsartan medoxomil (AZM) in achieving the target blood pressure (BP) (<140/90 mm Hg), its angioprotective action in patients with hypertension (HTN), as well as contribution in reducing levels of adipokines and inflammation markers in patients switching from lisinopril or enalapril.
Material and methods. This open-label observational study lasting 24 weeks included 60 patients who had previously received monotherapy with lisinopril 20 mg/day or enalapril 20 mg/day, and did not reach the target BP levels (<140/90 mm Hg).
During the study, all patients underwent 24-hour BP monitoring, applanation tonometry (determination of the augmentation index and central BP), pulse wave velocity measurement, laboratory tests (lipid profile, uric acid, fasting glucose, HOMA index, homocysteine, leptin, adiponectin, highly sensitive C-reactive protein (hs-CRP), tumor necrosis factor alpha, interleukin-6 (IL-6).
Results. After switching from lisinopril and enalapril to AZM, a decrease in systolic BP was 24,3% and 31,3%, diastolic BP — 19,8% and 21,4% (p<0,05). In the groups of initial therapy with lisinopril and enalapril, there was a decrease in central (aortic) BP by 20,4% and 25,5%, central pulse pressure by 20,6% and 27,6%, augmentation index by 33,1% and 34,58%, pulse wave velocity by 19,4% and 20,7% (p<0,05), levels of leptin by 10,4%, and 16,8%, hs-CRP by 16,1% and 19,3%, IL-6 by 23,6% and 25,1%, respectively. We also revealed an increase in adiponectin levels by 7,2% and 9,2%, respectively (p<0,05).
Conclusion. Azilsartan medoxomil has advantages over angiotensin-converting enzyme inhibitors (enalapril, lisinopril) in achieving BP control, and improving vascular elasticity. It contributes to a decrease in insulin resistance and noninfectious inflammation.
About the Authors
S. V. NedogodaRussian Federation
Competing Interests: not
E. V. Chumachek
Russian Federation
Competing Interests: not
V. V. Tsoma
Russian Federation
Competing Interests: not
T. N. Sanina
Russian Federation
Competing Interests: not
A. S. Salasyuk
Russian Federation
Competing Interests: not
V. O. Smirnova
Russian Federation
Competing Interests: not
E. A. Popova
Russian Federation
Competing Interests: not
References
1. Shlyakhto EV, Nedogoda SV, Konradi AO, et al. The concept of novel national clinical guidelines on obesity. Russ J Cardiol. 2016;(4):7-13. (In Russ.) doi:10.15829/1560-4071-2016-4-7-13.
2. Xia N, Li H. The role of perivascular adipose tissue in obesity-induced vascular dysfunction. British journal of pharmacology. 2017;174(20):3425-42. doi:10.1111/bph.13650.
3. Booth A, Magnuson A, Fouts J, Foster MT. Adipose tissue: an endocrine organ playing a role in metabolic regulation. Horm Mol Biol Clin Investig. 2016;26(1):25-42. doi:101515/hmbci-2015-0073.
4. Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension [published correction appears in J Hypertens. 2019 Jan;37(1):226]. J Hypertens. 2018;36(10):1953-2041. doi:10.1097/HJH.0000000000001940.
5. Kontsevaia AV, Romanenko TS, Vygodin VA, et al. Pharmacoepidemiology and the effectiveness of antihypertensive therapy in the specialized cardiological institution clinical practice. Rational Pharmacotherapy in Cardiology. 2015;11(1):8-17. (In Russ.) doi:10.20996/1819-6446-2015-11-1-8-17.
6. Leonova MV, Shteinberg LL, Belousov IuB, et al. Results of pharmacoepidemiological study PIFAGOR-IV: physicians compliance. Russian Journal of Cardiology. 2015;(1):59-66. (In Russ.) doi:10.15829/1560-4071-2015-1-59-66.
7. Terpstra WF, May JF, Smit AJ, et al. Long-term effects of amlodipine and lisinopril on left ventricular mass and diastolic function in elderly, previously untreated hypertensive patients: the ELVERA trial. J Hypertens. 2001;19(2):303-9. doi:10.1097/00004872-200102000-00018.
8. Omboni S, Parati G, Palatini P, et al. Reproducibility and clinical value of nocturnal hypotension: prospective evidence from the SAMPLE study. Study on Ambulatory Monitoring of Pressure and Lisinopril Evaluation. J Hypertens. 1998;16(6):733-8. doi:10.1097/00004872-199816060-00003.
9. Randomised placebo-controlled trial of lisinopril in normotensive patients with insulin-dependent diabetes and normoalbuminuria or microalbuminuria. The EUCLID Study Group. Lancet. 1997;349(9068):1787-92.
10. Crepaldi G, Carta Q, Deferrari G, et al. Effects of lisinopril and nifedipine on the progression to overt albuminuria in IDDM patients with incipient nephropathy and normal blood pressure. The Italian Microalbuminuria Study Group in IDDM. Diabetes Care. 1998;21(1):104-10. doi:10.2337/diacare.21.1.104.
11. Reisin E, Weir MR, Falkner B. Lisinopril versus hydrochlorothiazide in obese hypertensive patients: a multicenter placebo-controlled trial. Treatment in Obese Patients With Hypertension (TROPHY) Study Group. Hypertension. 1997;30(1):140-5. doi:10.1161/01.HYP.30.1.140.
12. Storka A, Vojtassakova E, Mueller M. Angiotensin inhibition stimulates PPARgamma and the release of visfatin. Eur J Clin Invest. 2008;38(11):820-6. doi:10.1111/j.1365-2362.2008.02025.x.
13. Westerink J, Visseren F. Pharmacological and non-pharmacological interventions to influence adipose tissue function Cardiovascular Diabetology. 2011;10:13. doi:10.1186/1475-2840-10-13.
14. Ramalingam L, Menikdiwela K, LeMieux M, et al. The renin angiotensin system, oxidative stress and mitochondrial function in obesity and insulin resistance. Biochim Biophys Acta Mol Basis Dis. 2017;1863(5):1106-14. doi:10.1016/j.bbadis.2016.07.019.
15. Parreno E, Palomares C, Martinez M, et al. Resistin and Cardiovascular Disease. J Cardiovasc Dis Diagn 2018, 6(331):2. doi:10.4172/2329-9517.1000331.
16. Miyata M, Ikeda Y, Nakamura S, et al. Effects of valsartan on fibrinolysis in hypertensive patients with metabolic syndrome: the KACT-MetS Study. Circ J. 2012;76:843-51. doi:10.1253/circj.CJ-12-0153.
17. Shishido T, Konta T, Nishiyama S, et al. Suppressive effects of valsartan on microalbuminuria and CRP in patients with metabolic syndrome (Val-Mets). Clin Exp Hypertens. 2011;33(2):117-23. doi:10.3109/10641963.2010.531837.
18. Gilowski W, Krysiak R, Marek B, Okopien B. The effect of short-term perindopril and telmisartan treatment on circulating levels of anti-inflammatory cytokines in hypertensive patients. Endokrynol Pol. 2018;69(6):667-74. doi:10.5603/EP.a2018.0068.
19. Zhu M, Tian J. Olmesartan for the treatment of primary hypertension patients and its influence on inflammatory factors. Cancer Cell Research. 2016;11:253-6.
20. Hiremat h JS, Hajare AL, Chinchansur SR, et al. Azilsartan: the Novel ARB with Unique Mechanism of Action. International Journal of Basic & Clinical Pharmacology. 2017;6:482-6. doi:10.18203/2319-2003.ijbcp20170458.
21. Bramlage P, Schmieder RE, Gitt AK, et al. The renin-angiotensin receptor blocker azilsartan medoxomil compared with the angiotensin-converting enzyme inhibitor ramipril in clinical trials versus routine practice: insights from the prospective EARLY registry. Trials. 2015;16:581. doi:10.1186/s13063-015-1100-8.
22. Gitt AK, Bramlage P, Potthoff SA, et al. Azilsartan compared to ACE inhibitors in antihypertensive therapy: one-year outcomes of the observational EARLY registry. BMC Cardiovasc Disord. 2016;16:56. Published 2016 Mar 8. doi:10.1186/s12872-016-0222-6.
23. Angeloni E. Azilsartan medoxomil in the management of hypertension: an evidence-based review of its place in therapy. Core evidence. 2016;11:1. doi:10.2147/CE.S81776.
24. White WB, Cuadra RH, Lloyd E, et al. Effects of azilsartan medoxomil compared with olmesartan and valsartan on ambulatory and clinic blood pressure in patients with type 2 diabetes and prediabetes. J Hypertens. 2016;34(4):788-797. doi:10.1097/HJH.0000000000000839.
25. Zhao D, Liu H, Dong P. Antihypertensive effect of azilsartan versus olmesartan in patients with essential hypertension: a meta-analysis. Irish Journal of Medical Science. (1971-) 2019;188(2):481-8. doi:10.1007/s11845-018-1859-1.
26. Priyadarshini I, Kumar S, Zahra N. A. Comparative study of effectiveness and safety of azilsartan and candesartan cilexetil in patients with grade 1-2 essential hypertension in a tertiary care hospital. Global Journal For Research Analysis. 2019;8(10). doi:10.36106/gjra.
27. Singh KD, Karnik SS. Angiotensin II receptors: structure-function and drug discovery. GPCRs. Academic Press. 2020:415-27. doi: 10.1016/B978-0-12-816228-6.00020-9.
28. Georgiopoulos G, Katsi V, Oikonomou D, et al. Azilsartan as a Potent Antihypertensive Drug with Possible Pleiotropic Cardiometabolic Effects: A Review Study. Front Pharmacol. 2016;7:235. Published 2016 Aug 3. doi:10.3389/fphar.2016.00235.
29. Mahmood NMA, Hussain SA, Khan HAEK. Azilsartan as “Add-On” Treatment with Methotrexate Improves the Disease Activity of Rheumatoid Arthritis. Biomed Res Int. 2018;2018:7164291. Published 2018 May 15. doi:10.1155/2018/7164291.
30. Mahmood NMA, Hussain SA, Mirza RR. Azilsartan improves the effects of etanercept in patients with active rheumatoid arthritis: a pilot study. Ther Clin Risk Manag. 2018;14:1379-85. Published 2018 Aug 7. doi:10.2147/TCRM.S174693.
31. Liu H, Mao P, Wang J, Wang T, Xie CH. Azilsartan, an angiotensin II type 1 receptor blocker, attenuates tert-butyl hydroperoxide-induced endothelial cell injury through inhibition of mitochondrial dysfunction and anti-inflammatory activity. Neurochem Int. 2016;94:48-56. doi:10.1016/j.neuint.2016.02.005.
32. Zand H, Morshedzadeh N, Naghashian F. Signaling pathways linking inflammation to insulin resistance. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2017;11:S307-S309. doi:10.1016/j.dsx.2017.03.006.
33. Nanjan MJ, Mohammed M, Prashantha Kumar BR, Chandrasekar MJN. Thiazolidinedio-nes as antidiabetic agents: A critical review. Bioorg Chem. 2018;77:548-67. doi:10.1016/j.bioorg.2018.02.009.
34. Chaudhary PK, Bhalla VK. Blood Pressure Response to Azilsartan in Hypertensive Patients. Journal of Advanced Medical and Dental Sciences Research. 2017;5(8):20. doi:10.21276/jamdsr.2017.5.7.07.
Review
For citations:
Nedogoda S.V., Chumachek E.V., Tsoma V.V., Sanina T.N., Salasyuk A.S., Smirnova V.O., Popova E.A. Azilsartan medoxomil for improving insulin resistance and adipokine levels in hypertension in comparison with angiotensin-converting enzyme inhibitors. Russian Journal of Cardiology. 2020;25(7):3767. (In Russ.) https://doi.org/10.15829/1560-4071-2020-3767