Preview

Russian Journal of Cardiology

Advanced search

Chaotic global analysis of heart rate variability following power spectral adjustments during exposure to traffic noise in healthy adult women

https://doi.org/10.15829/1560-4071-2020-3739

Abstract

Aim. Previous studies have described the substantial impact of different types of noise on the linear behaviour of heart rate variability (HRV). Yet, there are limited studies about the complexity or nonlinear dynamics of HRV during exposure to traffic noise. Here, we evaluated the complexity of HRV during traffic noise exposure via six power spectra and, when adjusted by the parameters of the Multi-Taper Method (MTM).

Material and methods. We analysed 31 healthy female students between 18 and 30 years old. Subjects remained at rest, seated under spontaneous breathing for 20 minutes with an earphone turned off and then the volunteers were exposed to traffic noise through an earphone for a period of 20 minutes. The traffic noise was recorded from a busy urban street and the sound involved car, bus, trucks engineers and horn sounds (71-104 dB).

Results. The results stipulate that CFP3 and CFP6 are the best metrics to distinguish the two groups. The most appropriate power spectra were, Welch and MTM. Increasing the DPSS parameter of MTM increased the performance of both CFP3 and CFP6 as mathematical markers. Adaptive was the preferred type for Thomson’s nonlinear combination method.

Conclusion. CFP3 with the adaptive option for MTM, and increased DPSS is designated as the best mathematical marker on the basis of five statistical tests.

About the Authors

D. M. Garner
Oxford Brookes University; Autonomic Nervous System Center, Sao Paulo State University
Brazil

Garner David M. — PhD candidate

Cardiorespiratory Research Group, Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus

Oxford, Marília



M. Alves
Autonomic Nervous System Center, Sao Paulo State University
Brazil

Alves Myrela

Marília



B. P. da Silva
Autonomic Nervous System Center, Sao Paulo State University
Brazil

da Silva Briane P.

Marília



L. V. de Alcantara Sousa
School of Medicine of ABC
Brazil

de Alcantara Sousa Luiz V.

Santo Andre



V. E. Valenti
Autonomic Nervous System Center, Sao Paulo State University

Valenti Vitor E.

Marília



References

1. Sim CS, Sung JH, Cheon SH, et al. The effects of different noise types on heart rate variability in men. Yonsei medical journal. 2015;56:235-43. doi:10.3349/ymj.2015.56.1.235.

2. Seely AJ, Macklem PT. Complex systems and the technology of variability analysis. Crit Care. 2004;8:R367-84. doi:10.1186/cc2948.

3. Shannon CE. A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communications Review. 2001;5:3-55. doi:10.1145/584091.584093.

4. Peng CK, Havlin S, Stanley HE, Goldberger AL. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos. 1995;5:82-7. doi:10.1063/1.166141.

5. Garner D M, Ling BW. K. Measuring and locating zones of chaos and irregularity. J Syst Sci Complex. 2014;27:494-506. doi:10.1007/s11424-014-2197-7

6. Alkan A, Kiymik MK. Comparison of AR and Welch methods in epileptic seizure detection. J Med Syst. 2006;30:413-9. doi:10.1007/s10916-005-9001-0.

7. Alkan A, Yilmaz AS. Frequency domain analysis of power system transients using Welch and Yule-Walker AR methods. Energy conversion and management. 2007;48:2129-35. doi:10.1016/j.enconman.2006.12.017.

8. Wajnsztejn R, De Carvalho TD, Garner DM, et al. Heart rate variability analysis by chaotic global techniques in children with attention deficit hyperactivity disorder. Complexity. 2016;21:412-9. doi:10.1002/cplx.21700.

9. Ghil M. The SSA-MTM Toolkit: Applications to analysis and prediction of time series. Applications of Soft Computing. 1997;3165:216-30. doi:10.1117/12.279594.

10. Subasi A. Selection of optimal AR spectral estimation method for EEG signals using Cramer-Rao bound. Comput.Biol.Med. 2007;37:183-94. doi:10.1016/j.compbiomed.2005.12.001

11. Subasi A. Application of classical and model-based spectral methods to describe the state of alertness in EEG. J Med Syst. 2005;29:473-86. doi:10.1007/s10916-005-6104-6.

12. Kiymik MK, Subasi A, Ozcalik HR. Neural networks with periodogram and autoregressive spectral analysis methods in detection of epileptic seizure. J Med Syst. 2004;28:511-22. doi:10.1023/b:joms.0000044954.85566.a9.

13. Seiver A, Daane S, Kim R. Regular low frequency cardiac output oscillations observed in critically ill surgical patients. Complexity. 1997;2;51-5.

14. Kawaguchi M, Takamatsu I, Masui K, Kazama T. Effect of landiolol on bispectral index and spectral entropy responses to tracheal intubation during propofol anaesthesia. Br.J.Anaesth. 2008;101:273-8. doi:10.1093/bja/aen162.

15. Kawaguchi M, Takamatsu I, Kazama T. Rocuronium dose-dependently suppresses the spectral entropy response to tracheal intubation during propofol anaesthesia. Br.J.Anaesth. 2009;102:667-72. doi:10.1093/bja/aep040

16. Alvarez D, Hornero R, Marcos J, et al. Spectral analysis of electroencephalogram and oximetric signals in obstructive sleep apnea diagnosis. Conf.Proc.IEEE Eng Med.Biol.Soc. 2009;2009:400-3. doi:10.1109/IEMBS.2009.5334905.

17. Banzett RB, O’Donnell CR. Should we measure dyspnoea in everyone? Eur Respir J. 2014;43:1547-50. doi:10.1183/09031936.00031114.

18. Schmidt M, Banzett RB, Raux M, et al. Unrecognized suffering in the ICU: addressing dyspnea in mechanically ventilated patients. Intensive Care Med. 2014;40:1-10. doi:10.1007/s00134-013-3117-3.

19. Goldberger AL, Peng CK, Lipsitz LA. What is physiologic complexity and how does it change with aging and disease? Neurobiol.Aging. 2002;23:23-6. doi:10.1016/S0197-4580(01)00266-4.

20. Ponnusamy A, Marques JL, Reuber M. Comparison of heart rate variability parameters during complex partial seizures and psychogenic nonepileptic seizures. Epilepsia. 2012;53:1314-21. doi:10.1111/j.1528-1167.2012.03518.x.

21. Ponnusamy A, Marques JL, Reuber M. Heart rate variability measures as biomarkers in patients with psychogenic nonepileptic seizures: potential and limitations. Epilepsy Behav. 2011;22:685-91. doi:10.1016/j.yebeh.2011.08.020.

22. Bernardo AF, Vanderlei LC, Garner DM. HRV Analysis: A Clinical and Diagnostic Tool in Chronic Obstructive Pulmonary Disease. Int Sch Res Notices. 2014;2014:673232. doi:10.1155/2014/673232.

23. Mackey MC, Milton JG. Dynamical diseases. Ann N Y Acad Sci. 1987;504:16-32. doi:10.1111/j.1749-6632.1987.tb48723.x.

24. Alves M, Garner DM, Fontes AM, et al. Linear and complex measures of heart rate variability during exposure to traffic noise in healthy women. Complexity. 2018;2018: ID 2158391. doi:10.1155/2018/2158391.

25. De Souza NM, Vanderlei LCM, Garner DM. Risk evaluation of diabetes mellitus by relation of chaotic globals to HRV. Complexity. 2015;20:84-92. doi:10.1002/cplx.21508.

26. Barreto GS, Vanderlei FM, Vanderlei LCM, Garner DM. Risk appraisal by novel chaotic globals to HRV in subjects with malnutrition. Journal of Human Growth and Development. 2014;24:243-8. doi:10.7322/jhgd.88900.

27. Vanderlei FM, Vanderlei LCM, Garner DM. Heart rate dynamics by novel chaotic globals to HRV in obese youths. Journal of Human Growth and Development. 2015;25:82-8. doi:10.7322/jhgd.96772.

28. Day BP, Evers A, Hack DE. Multipath Suppression for Continuous Wave Radar via Slepian Sequences. IEEE Transactions on Signal Processing. 2020;68:548-57. doi:10.1109/TSP.2020.2964199.

29. Razali NM, Wah YB. Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of Statistical Modeling and Analytics. 2011;2:21-33.

30. Yap BW, Sim CH. Comparisons of various types of normality tests. Journal of Statistical Computation and Simulation. 2011;81:2141-55. doi:10.1080/00949655.2010.520163.

31. Royston P. Approximating the Shapiro-Wilk W-Test for non-normality. Statistics and Computing. 1992;2:117-9.

32. Hsu JC. Multiple Comparisons: Theory and Methods. CRC Press: Boca Raton, Florida, 1996. doi:10.1201/b15074.

33. McKight PE, Najab J. Kruskal-wallis test. The corsini encyclopedia of psychology. 2010;1-1. doi:10.1002/9780470479216.corpsy0491.

34. Cohen J. Statistical power analysis for the behavioral sciences. Routledge, 2013.

35. Lakens D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Frontiers in psychology. 2013;4:863. doi:10.3389/fpsyg.2013.00863.

36. Hedges LV, Olkin I. Statistical methods for meta-analysis. Academic press, 2014. doi:10.2307/1164953.

37. Hedge LV. Distribution theory for Glass’s estimator of effect size and related estimators. journal of Educational Statistics. 1981;6:107-28. doi:10.3102/10769986006002107.

38. Kline R. Beyond significance testing: Retorming data analyisis methods in behavioral research.(pp. 247-271). Washington, DC, US: American Psychological Association. 2004. doi:10.1037/10693-000.

39. Ialongo C. Understanding the effect size and its measures. Biochemia medica: Biochemia medica. 2016;26:150-63. doi:10.11613/BM.2016.015.

40. Sawilowsky SS. New effect size rules of thumb. Journal of Modern Applied Statistical Methods. 2009;8:26. doi:10.22237/jmasm/1257035100.

41. Thomson DJ. Spectrum estimation and harmonic analysis. Proceedings of the IEEE. 1982;70:1055-96. doi:10.1109/PROC.1982.12433.

42. Bekka RE, Chikouche D. Effect of the window length on the EMG spectral estimation through the Blackman-Tukey method. In: Seventh International Symposium on Signal Processing and Its Applications. 2003. Proceedings. IEEE. 2003; 17-20. doi:10.1109/ISSPA.2003.1224804.

43. Ahmad A, Schlindwein FS, Ng GA. Comparison of computation time for estimation of dominant frequency of atrial electrograms: Fast fourier transform, blackman tukey, autoregressive and multiple signal classification. Journal of Biomedical Science and Engineering. 2010;3:843. doi:10.4236/jbise.2010.39114.


Review

For citations:


Garner D.M., Alves M., da Silva B.P., de Alcantara Sousa L.V., Valenti V.E. Chaotic global analysis of heart rate variability following power spectral adjustments during exposure to traffic noise in healthy adult women. Russian Journal of Cardiology. 2020;25(6):3739. https://doi.org/10.15829/1560-4071-2020-3739

Views: 642


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)