Preview

Russian Journal of Cardiology

Advanced search

Role of the autonomic nervous system in atrial fibrillation pathogenesis

https://doi.org/10.15829/1560-4071-2020-3663

Abstract

The aim of this review was to study the role of the autonomic nervous system in the pathogenesis of atrial fibrillation (AF), as well as to establish the relationship of autonomic regulation with other mechanisms underlying the AF At present, the molecular and cellular mechanisms underlying the AF have not been precisely established. There is interest in evidence showing that both sympathetic outflow and an increased vagal tone can initiate and support AF. As modern studies have shown, autonomic cardiac regulation can be an important factor in the pathogenesis of AF.

About the Authors

E. P. Popova
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Ekaterina Petrovna Popova - candidate of biological Sciences, Associate Professor of Department of pharmacology, SPIN-код: 5789-0451


Competing Interests: no


O. T. Bogova
Russian Medical Academy of Continuous Professional Education
Russian Federation
Olga Tiymurazovna Bogova - doctor of medical Sciences, Professor of Department of Geriatrics and Medical-social expertise of Russian medical Academy continuous professional education
Competing Interests: no


S. N. Puzin
I.M. Sechenov First Moscow State Medical University; Russian Medical Academy of Continuous Professional Education; Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology
Russian Federation

Sergey Nikiforovich Puzin - doctor of medical Sciences, Professor, Academician, Head of Department of Geriatrics and Medical-social expertise of Russian medical Academy continuous professional education; Professor of Department of physical therapy and sports medicine of I.M. Sechenov FMSMU, Deputy Director for science of Federal Research Clinical Center for Resuscitation and Rehabilitation.

125993, Moscow, Barikadnaya St., 2/1.119991, Moscow, Trubetskaya str., 8/2.,; Lytkino, Moscow Region; Russia


Competing Interests: no


V. P. Fisenko
I.M. Sechenov First Moscow State Medical University
Russian Federation

Vladimir Petrovich Fisenko - doctor of medical Sciences, Professor, Academician, Head of Department of pharmacology of I.M. Sechenov FMSMU/

Moscow

 


Competing Interests: no


References

1. Chugh SS, Havmoeller R, Narayanan K, et al. Worldwide epidemiology of atrial fibrillation: a global burden of disease 2010 study. Circulation. 2014;129:837-47. doi: 10.1161/CIRCULATIONAHA.113.005119.

2. Wyse DG, Van Gelder IC, Ellinor PT, et al. Lone atrial fibrillation: does it exist? J. Am. Coll. Cardiol. 2014;63:1715-23. doi:10.1016/j.jacc.2014.01.023.

3. Kirchhof P, Ammentorp B, Darius H, et al. Management of atrial fibrillation in seven European countries after the publication of the 2010 ESC guidelines on atrial fibrillation: primary results of the PREvention oF thromboemolic events-European Registry in Atrial Fibrillation (PREFER in AF). Europace. 2014;16(1):6-14. doi:10.1093/europace/eut263.

4. Enriquez A, Liang JJ, Santangeli P, et al. Focal atrial fibrillation from the superior vena cava. J. Atr. Fibrillation. 2017;9:1593. doi:10.4022/jafib.1593.

5. Klos M, Calvo D, Yamazaki M, et al. Atrial septopulmonary bundle of the posterior left atrium provides a substrate for atrial fibrillation initiation in a model of vagally mediated pulmonary vein tachycardia of the structurally normal heart. Circ. Arrhythm. Electrophysiol. 2008;1(3):175-83. doi:10.1161/CIRCEP.107.760447.

6. Tanaka K, Zlochiver S, Vikstrom KL, et al. Spatial distribution of fibrosis governs fibrillation wave dynamics in the posterior left atrium during heart failure. Circ. Res. 2007;101:839-47. doi:10.1161/CIRCRESAHA.107.153858.

7. Atienza F, Almendral J, Ormaetxe JM, et al. Investigators Comparison of radiofrequency catheter ablation of drivers and circumferential pulmonary vein isolation in atrial fibrillation: a noninferiority randomized multicenter RADAR-AF trial. J. Am. Coll. Cardiol. 2014;64(23):2455-67. doi:10.1016/j.jacc.2014.09.053.

8. Perez-Lugones A, McMahon JT, Ratliff NB, et al. Evidence of specialized conduction cells in human pulmonary veins of patients with atrial fibrillation. J. Cardiovasc. Electrophysiol. 2003;14:803-9. doi:10.1046/j.1540-8167.2003.03075.x.

9. Gherghiceanu M, Hinescu ME, Andrei F, et al. Interstitial Cajal-like cells (ICLC) in myocardial sleeves of human pulmonary veins. J. Cell. Mol. Med. 2008;12:1777-81. doi:10.1111/j.1582-4934.2008.00444.x.

10. Moe GK, Abildskov JA. Atrial fibrillation as a self-sustaining arrhythmia independent of focal discharge. Am. Heart J. 1959;58:59-70. doi:10.1016/0002-8703(59)90274-1.

11. Cox JL, Boineau JP, Schuessler RB, et al. Successful surgical treatment of atrial fibrillation. Review and clinical update. JAMA. 1991;266(14):1976-80.

12. De Groot N, van der Does L, Yaksh A, et al. Direct proof of endoepicardial asynchrony of the atrial wall during atrial fibrillation in humans. Circ. Arrhythm. Electrophysiol. 2016 ;9(5). e003648. doi:10.1161/CIRCEP.115.003648.

13. Narayan SM, Jalife J. CrossTalk proposal: rotors have been demonstrated to drive human atrial fibrillation. J. Physiol. 2014;592:3163-6. doi:10.1113/jphysiol.2014.271031.

14. Calvo D, Rubin J, Perez D, Moris C. Ablation of rotor domains effectively modulates dynamics of human: long-standing persistent atrial fibrillation. Circ. Arrhythm. Electrophysiol. 2017;10:e005740. doi:10.1161/CIRCEP.117.005740.

15. Wit AL, Boyden PA. Triggered activity and atrial fibrillation. Heart Rhythm. 2007;4(3):17-23. doi:10.1016/j.hrthm.2006.12.021.

16. Wang TM, Chiang CE, Sheu JR, et al. Homogenous distribution of fast response action potentials in canine pulmonary vein sleeves: a contradictory report. Int. J. Cardiol. 2003;89:187-95. doi:10.1016/s0167-5273(02)00474-6.

17. Arora R, Verheule S, Scott L, et al. Arrhythmogenic substrate of the pulmonary veins assessed by highresolution optical mapping. Circulation. 2003;107:1816-21. doi:10.1161/01.CIR.0000058461.86339.7E.

18. Patterson E, Lazzara R, Szabo B, et al. Sodium-calcium exchange initiated by the Ca2+ transient: an arrhythmia trigger within pulmonary veins. J. Am. Coll. Cardiol. 2006;47:1196-206. doi:10.1016/j.jacc.2005.12.023.

19. Caballero R, de la Fuente MG, Gomez R, et al. In humans, chronic atrial fibrillation decreases the transient outward current and ultrarapid component of the delayed rectifier current differentially on each atria and increases the slow component of the delayed rectifier current in both. J. Am. Coll. Cardiol. 2010;55:2346-54. doi:10.1016/j.jacc.2010.02.028.

20. Atienza F, Almendral J, Moreno J, et al. Activation of inward rectifier potassium channels accelerates atrial fibrillation in humans: evidence for a reentrant mechanism. Circulation. 2006;114:2434-42. doi:10.1161/CIRCULATIONAHA.106.633735.

21. Martins RP, Kaur K, Hwang E, et al. Dominant frequency increase rate predicts transition from paroxysmal to long-term persistent atrial fibrillation. Circulation. 2014;129:1472-82. doi:10.1161/CIRCULATIONAHA.113.004742.

22. Munoz V, Grzeda KR, Desplantez T, et al. Adenoviral expression of IKs contributes to wavebreak and fibrillatory conduction in neonatal rat ventricular cardiomyocyte monolayers. Circ. Res. 2007;101:475-83. doi:10.1161/CIRCRESAHA.107.149617.

23. Armour JA. Potential clinical relevance of the “little brain” on the mammalian heart. Exp. Physiol. 2008;93:165-76. doi:10.1113/expphysiol.2007.041178.

24. Prives MG, Lysenkov NK, Bushkovich VI. Anatomia cheloveka. Uchebnik. Saint-Petersburg. St.Petersburg MAPO publishing house. 2004; p. 720. (In Russ.)

25. Choi EK, Shen MJ, Han S, et al. Intrinsic cardiac nerve activityand paroxysmal atrial tachyarrhythmia in ambulatory dogs. Circulation. 2010;121:2615-23. doi:10.1161/CIRCULATIONAHA.109.919829.

26. Rysevaite K, Saburkina I, Pauziene N, et al. Immunohis-tochemical characterization of the intrinsic cardiac neural plexus in whole-mount mouse heart preparations. Heart Rhythm. 2011;8:731-8. doi:10.1016/j.hrthm.2011.01.013.

27. Yu HT, Kim TH, Uhm JS, et al. Prognosis of high sinus heartrate after catheter ablation for atrial fibrillation. Europace. 2017;19:1132-9. doi:10.1093/europace/euw142.

28. Arora R, Ulphani JS, Villuendas R, et al. Neural substrate foratrial fibrillation: implications for targeted parasympathetic blockade in the posterior left atrium. Am. J. Physiol. Heart Circ. Physiol. 2008;294(1):134-44. doi:10.1152/ajpheart.00732.2007.

29. Maupoil V, Bronquard C, Freslon JL, et al. Ectopic activity in the rat pulmonary vein can arise from simultaneous activation of alpha1- and beta1-adrenoceptors. Br. J. Pharmacol. 2007;150:899-905. doi:10.1038/sj.bjp.0707177.

30. Arsenault KA, Yusuf AM, Crystal E, et al. Interventionsfor preventing post-operative atrial fibrillation in patientsundergoing heart surgery. Cochrane Database Syst. Rev. 2013;31(1):CD003611. doi:10.1002/14651858.CD003611.pub3.

31. Cammarano C, Silva M, Comee M, et al. Meta-analysis of ivabradine in patients with stable coronaryartery disease with and without left ventricular dysfunction. Clin. Ther. 2016;38:387-95. doi:10.1016/j.clinthera.2015.12.018.

32. Scridon A, Dobreanu D. Inside molecular mechanisms and tar-gets of atrial fibrillation. In: Camm J, Bayes de Luna A, Dan GA (eds). Atrial fibrillation drug therapy update. London. Springer. 2014;23-54.

33. Levy MN. Autonomic interactions in cardiac control. Ann. N. YAcad. Sci. 1990; 601:209-21. doi:10.1111/j.1749-6632.1990.tb37302.x.

34. Sharifov OF, Fedorov VV, Beloshapko GG, et al. Roles of adrenergic andcholinergic stimulation in spontaneous atrial fibrillation indogs. J. Am. Coll. Cardiol. 2004;43:483-90. doi:10.1016/j.jacc.2003.09.030.

35. Task Forse of the European Society of Cardiology and the North American Society of Paciety of Pacing and Electrophysiology. Heart rate variability. Standarts of measurements, physiological interpretation and clinical use. Circulation. 1996;93:1043-65.


Review

For citations:


Popova E.P., Bogova O.T., Puzin S.N., Fisenko V.P. Role of the autonomic nervous system in atrial fibrillation pathogenesis. Russian Journal of Cardiology. 2020;25(7):3663. (In Russ.) https://doi.org/10.15829/1560-4071-2020-3663

Views: 1377


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)