HEART MORPHOLOGY, STRUCTURE, AND FUNCTION IN OBESITY
Abstract
The prevalence of overweight and obesity is currently increasing worldwide. Obesity is a risk factor of cardiovascular disease and Type 2 diabetes mellitus. In obese individuals, metabolic, dyshormonal, and hemodynamic changes directly affect myocardial structure and function. Mitochondrial dysfunction and oxidative stress, insulin resistance and hyperglycaemia, dysadipokinemia, and direct lipotoxic effects of lipids and free fatty acids on myocardium are important pathogenetic mechanisms of cardiac remodelling and cardiac functional changes in obesity. Better understanding of these mechanisms could lead to the development of pharmacological methods of metabolic normalisation and inhibition of cardiac lipotoxic effects, in order to prevent chronic heart failure and other cardiovascular events in obese patients.
About the Authors
G. A. ChumakovaRussian Federation
N. G. Veselovskaya
Russian Federation
A. A. Kozarenko
Russian Federation
Yu. V. Vorobyeva
Russian Federation
References
1. Hensrud D. D., Klein S. Extreme obesity: a new medical crisis in the United States. Mayo Clin Proc 2006; 81:5–10.
2. Van Gaal L. F., Mertens I. L., De Block C. E. Mechanisms linking obesity with cardiovascular disease. Nature 2006; 444:875–80.
3. Artham S. M., Lavie C. J., Patel H. M., et al. Impact of obesity on the risk of heart failure and its prognosis. Cardiometab Syndr. 2008;3 (3):155–61.
4. Boudina S., Abel E. D. Mitochondrial uncoupling: a key contributor to reduced cardiac efficiency in diabetes. Physiology 2006; 21:250–8.
5. Boudina S., Sena S., Theobald H., et al. Mitochondrial energetic in the heart in obesity related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes 2007;56: 2457–66.
6. Diamant M., Lamb H. J., Groeneveld Y., et al. Diastolic dysfunction is associated with altered myocardial metabolism in asymptomatic normotensive patients with well-controlled type 2 diabetes mellitus. J Am Coll Cardiol 2003; 42:328–35.
7. Abel E. D. Insulin signaling in heart muscle: lessons from genetically engineered mouse models. Curr Hypertens Rep. 2004;6: 416–23.
8. Hu P., Zhang D., Swenson L., et al. Minimally invasive aortic banding in mice: effects of altered cardiomyocyte insulin signaling during pressure overload. Am J Physiol Heart Circ Physiol 2003; 285: 1261–69.
9. Li SY, Sigmon V. K., Babcock S. A. Advanced glycation endproduct induces ROS accumulation, apoptosis, MAP kinase activation and nuclear O-GlcNAcylation in human cardiac myocytes. Life Sci 2007; 80:1051–56.
10. Hashimoto N., Kanda J., Nakamura T., et al. Association of hypoadiponectinemia in men with early onset of coronary heart disease and multiple coronary artery stenoses. Metabolism 2006;55: 1653–57.
11. Avelar E., Cloward T. V., Walker J. M., et al. Left ventricular hypertrophy in severe obesity: interactions among blood pressure, nocturnal hypoxemia, body mass. Hypertension 2007; 49:34–39.
12. Iacobellis G., Ribaudo M. C., Zappaterreno A., et al. Adapted changes in left ventricular structure and function in severe uncomplicated obesity. Obes Res 2004; 12:1616–21.
13. Yasue S., Masuzaki H., Okada S., et al. Adipose tissue-specific regulation of angiotensinogen in obese humans and mice: impact of nutritional status and adipocyte hypertrophy. Am J Hypertens. 2010; 23 (4):425–31.
14. Han S. H., Quon M. J., Kim J. A., et al. Adiponectin and cardiovascular disease: response to therapeutic interventions. J Am Coll Cardiol 2007; 49:531–8.
15. Frystyk J., Berne C., Berglund L., et al. Serum adiponectin is a predictor of coronary heart disease: a population-based 10-year follow-up study in elderly men. J Clin Endocrinol Metab 2007; 92:571–6.
16. Iacobellis G., Petrone A., Leonetti F., et al. Left ventricular mass and +276 G/G single nucleotide polymorphism of the adiponectin gene in uncomplicated obesity. Obesity. 2006; 14:368–72.
17. Pischon T., Rimm E. B. Adiponectin: a promising marker for cardiovascular disease. Clin Chem 2006; 52:797–9.
18. Shibata R., Sato K., Pimentel D. R., et al. Adiponectin protects against myocardial ischemiareperfusion injury through AMPK- and COX-2-dependent mechanisms. Nat Med 2005;11: 1096–103.
19. Fujioka D., Kawabata K., Saito Y., et al. Role of adiponectin receptors in endothelin-induced cellular hypertrophy in cultured cardiomyocytes and their expression in infarcted heart. Am J Physiol Heart Circ Physiol 2006; 290:2409–16.
20. Takahashi T., Saegusa S., Sumino H., et al. Adiponectin, T-cadherin and tumour necrosis factor-alpha in damaged cardiomyocytes from autopsy specimens. J Int Med Res 2005; 33:236–44.
21. Lam K. S., Xu A. Adiponectin: protection of the endothelium. Curr Diab Rep 2005; 5:254–59.
22. Fry M., Smith P. M., Hoyda T. D., et al. Area postrema neurons are modulated by the adipocyte hormone adiponectin. J Neurosci 2006; 26:9695–702.
23. Correia M. L., Haynes WG. Obesity-related hypertension: is there a role for selective leptin resistance? Curr Hypertens Rep 2004; 6:230–5.
24. Xu F. P., Chen M. S., Wang Y. Z., et al. Leptin induces hypertrophy via endothelin-1-reactive oxygen species pathway in cultured neonatal rat cardiomyocytes. Circulation 2004; 110:1269–75.
25. Abe Y., Ono K., Kawamura T., et al. Leptin induces elongation of cardiac myocytes and causes eccentric left ventricular dilatation with compensation. Am J Physiol Heart Circ Physiol. 2007;292 (5):2387–96.
26. Lieb W., Sullivan L. M., Harris T. B., et al. Plasma leptin levels and incidence of heart failure, cardiovascular disease, and total mortality in elderly individuals. Diabetes Care 2009; 32 (4):612–16.
27. Rajapurohitam V., Gan X. T., Lorrie A., et al. The Obesity-Associated Peptide Leptin Induces Hypertrophy in Neonatal Rat Ventricular Myocytes. Circulation Research 2003; 93:277–87.
28. Cheyne J. A. case of apoplexy in which the fleshy part of the heart was converted into fat. Dublin Hosp Rep 1818; 2:216–23.
29. Adam R., Abel W. Lipotoxicity in the Heart. Biochim Biophys Acta. 2010; 1801 (3): 311–319.
30. Okere I. C., Chandler M. P., McElfresh T. A., et al. Differentil effects of saturated and unsaturated fatty acid diets on cardiomyocyte apoptosis, adipose distribution, serum leptin. Am J Physiol Heart Circ Physiol 2006; 291:38–44.
31. Iacobellis G., Leonetti F., Singh N. Relationship of epicardial adipose tissue with atrial dimensions and diastolic function in morbidly obese subjects. Int J Cardiol 2007; 115:272–3.
32. Kim E., Choe Y. H., Han B. K., et al. Right ventricular fat infiltration in asymptomatic subjects: observations from ECG-gated 16-slice multidetector CT. J Comput Assist Tomogr 2007; 31:22–8.
33. Buettner H. J., Mueller C., Gick M., et al. The impact of obesity on mortality in UA/non-STsegment elevation myocardial infarction. Eur Heart J 2007; 28:1694–701.
34. Garg S., Narula J., Chandrashekhar Y. Apoptosis and heart failure: clinical relevance and therapeutic target. J Mol Cell Cardiol 2005; 38:73–9.
35. Wong C. Y., O’Moore-Sullivan T., Leano R., et al. Alterations of left ventricular myocardial characteristics associated with obesity. Circulation 2004; 110:3081–7.
36. Chinali M., de Simone G., Roman M. J., et al. Impact of obesity on cardiac geometry and function in a population of adolescents: the Strong Heart Study. J Am Coll Cardiol 2006; 47:2267–73.
37. Wong C. Y., O’Moore-Sullivan T, Leano R, et al. Association of subclinical right ventricular dysfunction with obesity. J Am Coll Cardiol 2006; 47:611–6.
38. Her C., Cerabona T., Bairamian M., et al. Right ventricular systolic function is not depressed in morbid obesity. Obes Surg 2006; 16:1287–93.
39. Wang T. J., Parise H., Levy D., et al. Obesity and the risk of new-onset atrial fibrillation. J Am Med Assoc 2004; 292:2471–7.
40. Surapaneni P., Vinales K., Najib M. et al. Valvular Heart Disease with the Use of Fenfluramine-Phentermin. Tex Heart Inst J. 2011; 38 (5): 581–583.
Review
For citations:
Chumakova G.A., Veselovskaya N.G., Kozarenko A.A., Vorobyeva Yu.V. HEART MORPHOLOGY, STRUCTURE, AND FUNCTION IN OBESITY. Russian Journal of Cardiology. 2012;(4):93-99. (In Russ.)