Preview

Russian Journal of Cardiology

Advanced search

OXIDATIVE-ANTIOXIDANT CHANGES OF LOW-DENSITY LIPOPROTEINS AND THEIR ASSOCIATION WITH ATHEROSCLEROTIC RISK FACTORS IN MALE NOVOSIBIRSK POPULATION

Abstract

Aim. To investigate the parameters of oxidative-antioxidant changes of low-density lipoproteins (LDL) in a male population, and to study their association with selected risk factors of atherosclerosis and coronary heart disease (CHD). Material and methods. This population study included 1024 Novosibirsk men, aged 47–73 years. Questionnaire survey, standard cardiological examination, anthropometry, blood pressure (BP) measurement, and electrocardiography (ECG) were performed. Assessed biochemical parameters included total cholesterol (TCH), triglycerides (TG), high-density lipoprotein cholesterol (HDL–CH), high-sensitivity C‑reactive protein (hsCRP), glucose, baseline lipid peroxidation (LPO) and fat-soluble antioxidants (alpha-tocopherol, retinol, beta-carotene, xanthines) in LDL, LDL resistance to oxidation in vitro, and autoantibodies to oxidized LDL (oxLDL). Results. For the male Novosibirsk population, the region-specific 10% and 90% cutoff points for the percentile distribution of baseline LPO in LDL, LDL resistance to oxidation at initiation and propagation stages of oxidative LDL modifications, lipophylic LDL antioxidants, and autoantibodies to oxLDL are presented. Correlations were observed between baseline LPO in LDL and hsCRP levels; between LDL resistance to oxidation and blood lipid profile, body mass index (BMI), and CHD; between the levels of autoantibodies to oxLDL and hsCRP or BMI; between LDL antioxidants (particularly alpha-tocopherol) and blood lipid profile, hsCRP, BMI, and CHD. In men, increased levels of LPO in LDL, reduced levels of LDL antioxidants, and decreased LDL resistance to oxidation were independently associated with elevated blood levels of TCH, TG, and hsCRP, low HDL–CH levels, increased BMI, and present CHD. Conclusion. In the examined male population, regional reference values for the parameters of oxidative-antioxidant LDL changes were identified. They were independently associated not only with present CHD, but also with pathogenetically significant, potentially atherogenic coronary risk factors.

About the Authors

Yu. I. Ragino
Федеральное государственное бюджетное учреждение «Научно-исследовательский институт терапии» Сибирского отделения Российской академии медицинских наук (ФГБУ «НИИ терапии» СО РАМН), Новосибирск
Russian Federation


A. S. Krivchun
Institute of Internal Medicine, Siberian Branch, Russian Academy of Medical Sciences, Novosibirsk
Russian Federation


M. V. Ivanova
Institute of Internal Medicine, Siberian Branch, Russian Academy of Medical Sciences, Novosibirsk
Russian Federation


L. V. Shcherbakova
Institute of Internal Medicine, Siberian Branch, Russian Academy of Medical Sciences, Novosibirsk
Russian Federation


S. K. Malyutina
Institute of Internal Medicine, Siberian Branch, Russian Academy of Medical Sciences, Novosibirsk
Russian Federation


Yu. P. Nikitin
Institute of Internal Medicine, Siberian Branch, Russian Academy of Medical Sciences, Novosibirsk
Russian Federation


M. I. Voevoda
Institute of Internal Medicine, Siberian Branch, Russian Academy of Medical Sciences, Novosibirsk
Russian Federation


References

1. Osterud B., Bjorklid E. Role monocytes in atherogenesis. Physiol. Rev., 2003; 83: 1069–113.

2. Williams K.J., Fisher E.A. Oxidation, lipoproteins and atherosclerosis. Curr. Opin. in Clin. Nutr. Care, 2005; 8: 139–146.

3. Steinberg D. The LDL modification hypothesis of atherogenesis: an update.J. Lipid Res., 2009; Suppl.: S376–81.

4. Stocker R., Keaney J.F. New insights on oxidative stress in the artery wall.J. Thromb. Haemost., 2005; 3 (8): 1825–1834.

5. Menschikova E.B., Lankin V.Z., Zenkov N.K. et al. Oxidative stress. Prooxidants and antioxidants. Moscow: Word, 2006, 560 p. Russian (Меньщикова Е.Б., Ланкин В.З., Зенков Н.К. и др. Окислительный стресс. Прооксиданты и антиоксиданты. Москва: Слово, 2006, 560 с).

6. De Rosa S., Cirillo P., Paglia A. et al. Reactive oxygen species and antioxidants in the pathophysiology of cardiovascular disease: does the actual knowledge justify a clinical approach? Curr. Vasc. Pharmacol., 2010; 8 (2): 259–275.

7. Ishigaki Y., Oka Y., Katagiri H. Circulating oxidized LDL: a biomarker and a pathogenic factor. Curr. Opin. Lipidol., 2009; 20 (5): 363–369.

8. Esterbauer H., Jurgens G. Mechanistic and genetic aspects of susceptibility of LDL to oxidation. Current Opinion in Lipidology, 1993; 4: 114–24.

9. Yoshida H., Kisugi R. Mechanisms of LDL oxidation. Clin. Chim. Acta, 2010; 411 (23–24): 1875–82.

10. Ragino Yu. I., Voevoda M. I., Dushkin M. I. et al. Application of new biochemical methods for evaluation of oxidative-antioxidative potential of low density lipoproteins. Clinical laboratorial diagnostic, 2005; 4: 11–15. Russian (Рагино Ю. И., Воевода М. И., Душкин М. И. и др. Применение новых биохимических способов для оценки окислительно-антиоксидантного потенциала липопротеинов низкой плотности. Клиническая лабораторная диагностика, 2005; 4: 11–15).

11. Voevoda M. I., Semaeva E. V., Ragino Yu. I. et al. Lipid and lipoproteins disturbances in coronary atherosclerosis. Comparison with population data. Russian cardiology journal, 2005; 4: 58–63. Russian (Воевода М. И., Семаева Е. В., Рагино Ю. И. и др. Липидные и липопротеиновые нарушения при коронарном атеросклерозе. Сравнение с популяционными данными. Российский кардиологический журнал, 2005; 4: 58–63).

12. Ragino Yu.I., Polonskaya Ya.V., Semaeva E.V. et al. Atherogenic oxidative and structural modifications of low density lipoproteins in coronary atherosclerosis men. Cardiology, 2007; 11: 14–19. Russian (Рагино Ю. И., Полонская Я.В., Семаева Е.В. и др. Атерогенные окислительная и структурная модификации липопротеинов низкой плотности у мужчин с коронарным атеросклерозом. Кардиология, 2007; 11: 14–19).

13. Mitra S., Deshmukh A., Sachdeva R. et al. Oxidized low-density lipoprotein and atherosclerosis implications in antioxidant therapy. Am.J. Med. Sci., 2011; 342 (2): 135–42.

14. D’Archivio M., Annuzzi G., Vari R. et al. Predominant role of obesity/insulin resistance in oxidative stress development. Eur.J. Clin. Invest., 2012; 42 (1): 70–78. 15. Singh U., Jialal I. Anti-inflammatory effects of alpha-tocopherol. Ann. N. Y. Acad. Sci., 2004; 1031: 195–203.


Review

For citations:


Ragino Yu.I., Krivchun A.S., Ivanova M.V., Shcherbakova L.V., Malyutina S.K., Nikitin Yu.P., Voevoda M.I. OXIDATIVE-ANTIOXIDANT CHANGES OF LOW-DENSITY LIPOPROTEINS AND THEIR ASSOCIATION WITH ATHEROSCLEROTIC RISK FACTORS IN MALE NOVOSIBIRSK POPULATION. Russian Journal of Cardiology. 2012;(3):56-61. (In Russ.)

Views: 479


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1560-4071 (Print)
ISSN 2618-7620 (Online)