САХАРНЫЙ ДИАБЕТ 2-ГО ТИПА С КАРДИОВАСКУЛЯРНОЙ АВТОНОМНОЙ НЕЙРОПАТИЕЙ

Сергиенко В.А., Сергиенко А.А.

Цель. Провести анализ особенностей некоторых показателей инсулиновой резистентности, концентрации N-терминального фрагмента натрий-уретического мозгового пептида (NT-proBNP), высокочувствительного С-реактивного протеина (hsCPП) и некоторых про- и противоспалительных цитокинов у больных сахарным диабетом 2-го типа (СД-2) с кардиоваскулярной автономной нейропатией (КАН).

Материал и методы. Обследовано 48 больных СД-2, из них 12 без верифицированных сердечно-сосудистых заболеваний (ССЗ), 36 пациентов с функциональной стадией КАН в возрасте 50-59 лет, СД-2 — 1-6 лет, уровнем HbA $_{1c}$ 7,1±0,6%. Контроль: 15 практически здоровых лиц аналогичного возраста (р>0,05). Проводился скрининг КАН, включавший 5 кардиоваскулярных тестов, анализировали результаты суточного мониторинга артериального давления, ЭКГ; эхокардиографии. В крови определяли уровень глюкозы, HbA $_{1c}$, инсулина (ИРИ), NT-ргоВNР, hsCPП, фактора некроза опухолей- α (ФНО- α), интерлейкина (ИЛ)-6, ИЛ-8 и ИЛ-10. Рассчитывали индекс инсулиновой резистентности (НОМА-ИР), коэффициент ФНО- α /ИЛ-10.

Результаты. У больных СД-2 с КАН наблюдалось увеличение показателей инсулиновой резистентности, а именно — концентрации ИРИ (26,6±1,73 мкМЕ/мл, p<0,001 — в сравнении с контролем; $p_1<0,001$ — больными СД-2 без ССЗ), HOMA-ИР (8,56±0,72, p<0,001, $p_1<0,001$), уровней провоспалительных цитокинов ФНО- α (5,75±0,24 пг/мл, p<0,001, $p_1<0,001$), ИЛ-6 (5,88±0,38 пг/мл, p<0,001, $p_1<0,001$), ИЛ-8 (6,65±0,3 пг/мл, p<0,001, $p_1>0,05$); а также hsCPП (2,77±0,24 пг/л, p<0,001), $p_1<0,001$) и коэффициента ФНО- α /ИЛ-10 (44,2±3,57%, p<0,01, $p_1<0,05$). Присоединение КАН ассоциируется с увеличением уровня NTproBNP (407,0±23,0 фмоль/мл, p<0,001, $p_1<0,001$), что коррелирует с возрастанием массы миокарда левого желудочка (ММЛЖ) (r=0,52, p<0,05).

Заключение. У больных СД-2 с функциональной стадией КАН наблюдается увеличение концентрации ИРИ, показателей НОМА-ИР; содержания NT-proBNP, hsCPП, ФНО- α , ИЛ-6, ИЛ-8 и ИЛ-10. Отмечается увеличение коэффициента ФНО- α /ИЛ-10, что может свидетельствовать о наличии компенсаторного типа цитокинового дисбаланса. Уровень NT-proBNP у пациентов СД-2 коррелирует с увеличением ММЛЖ, что ассоциируется с развитием КАН.

Российский кардиологический журнал 2015, 9 (125): 51–54 http://dx.doi.org/10.15829/1560-4071-2015-09-51-54

Ключевые слова: сахарный диабет 2-го типа, кардиоваскулярная автономная нейропатия, инсулиновая резистентность, N-терминальный фрагмент натрий-уретического мозгового пептида, масса миокарда левого желудочка, маркеры воспаления.

Львовский национальный медицинский университет им. Данилы Галицкого, Львов, Украина.

Сергиенко В. А.* — к.м.н., ассистент кафедры эндокринологии, Сергиенко А. А. — д.м.н., профессор кафедры эндокринологии.

*Автор, ответственный за переписку (Corresponding author): serhivenko@inbox.ru

ДЛП — дислипопротеинемия, ИЛ — интерлейкин, ИР — инсулиновая резистентность, КАН — кардиоваскулярная автономная нейропатия, ММЛЖ — масса миокарда левого желудочка, ОХС — общий холестерин, СД (СД-2) — сахарный диабет 2-го типа, ССЗ — сердечно-сосудистые заболевания, ФНО- α — фактор некроза опухолей- α , ХСН — хроническая сердечная недостаточность, ЭКГ — электрокардиография, GLUT4 — транспортер глюкозы, HbA $_{\rm 1c}$ — гликированный гемоглобин А $_{\rm 1c}$, hsCPП — высокочувствительный С-реактивный протеин, NT-proBNP — N-терминальный фрагмент натрий-уретического мозгового пептида, IRS — субстрат рецептора инсулина, HOMA-ИР — индекс инсулиновой резистентности.

Рукопись получена 03.02.2015 Рецензия получена 26.02.2015 Принята к публикации 05.03.2015

DIABETES MELLITUS 2ND TYPE WITH CARDIOVASCULAR AUTONOMIC NEUROPATHY

Serhiyenko V.A., Serhiyenko A.A.

Aim. To perform the analysis of some parameters of insulin resistance, concentration of N-terminal natriuretic pro-brain peptide (NT-proBNP), hi-sensitive C-reactive proteine (hsCRP) and some pro- and anti-inflammatory cytokines in diabetes mellitus patients with diabetes mellitus 2nd type (DM2) with cardiovascular autonomic neuropathy (CAN).

Material and methods. Totally 48 patients studied with DM2, of those 12 without verified cardiovascular diseases (CVD), 36 patients with functional stage of CAN, age 50-59 y., DM2 1-6 y. duration, HbA $_{1c}$ 7,1±0,6%. Controls: 15 same age almost healthy persons (p>0,05). The screening for CAN was performed that included 5 cardiovascular tests, the data from ambulatory blood pressure monitor was analyzed, ECG; and echocardiography, HbA $_{1c}$, insulin (IRI), NT-proBNP, hsCRP, tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-8 μ IL-10. The Index of insulin resistance was calculated (HOMA-IR), coefficient TNF-α/IL-10.

Results. In DM2 patients with CAN there was an increase of insulin resistance values, e.g. IRI concentration (26,6±1,73 mcIU/ml, p<0,001 — comparing to controls; p_1 <0,001 — patients with DM2 not CVD), HOMA-IR (8,56±0,72, p<0,001, p_1 <0,01); levels of proinflammatory cytokines TNF- α (5,75±0,24 pg/ml, p<0,001, p,<0,001), IL-6 (5,88±0,38 pg/ml, p<0,001, p,<0,001), IL-8 (6,65±0,3 pg/ml,

p<0,001, p_,>0,05); and hsCRP (2,77±0,24 pg/L, p<0,001, p_,<0,001) and coefficient TNF- α /IL-10 (44,2±3,57%, p<0,01, p_,<0,05). Addition of CAN is associated with the increase of NTproBNP (407,0±23,0 fmol/ml, p<0,001, p_,<0,001), that correlates with the growth of the left ventricle myocardial mass (LVMM) (r=0,52, p<0,05).

Conclusion. In DM2 patients with the functional stage of CAN there is an increase of IRI, HOMA-IR; concentrations of NT-proBNP, hsCRP, TNF- α , IL-6, IL-8 μ IL-10. there is also an increase of TNF- α /IL-10, that witnesses for the compensatory type of cytokine balance. The level of NT-proBNP in DM2 patients correlates with LVMM that is associated with CAN development.

Russ J Cardiol 2015, 9 (125): 51-54

http://dx.doi.org/10.15829/1560-4071-2015-09-51-54

Key words: second type diabetes, cardiovascular autonomic neuropathy, insulin resistance, N-terminal brain-type pro-natriuretic peptide, myocardial mass of the left ventricle, inflammation markers.

Lviv National Medical University n.a. Danila Galitsky, Lviv, Ukraine.

Кардиоваскулярная автономная нейропатия (КАН) при сахарном диабете типа 2 (СД-2) характеризуется поражением нервных волокон парасимпатического и симпатического отделов вегетативной нервной системы и считается независимым фактором риска сердечно-сосудистой смертности [1]. Следовательно, проблема ранней диагностики диабетической КАН является особенно актуальной.

Цель работы — провести анализ особенностей некоторых показателей инсулиновой резистентности (ИР), концентрации N-терминального фрагмента натрий-уретического мозгового пептида (NT-proBNP), высокочувствительного С-реактивного протеина (hsCPП) и некоторых про- и противоспалительных цитокинов у больных СД-2 с КАН.

Материал и методы

Нами обследовано 48 больных СД-2, из них 12 без верифицированных сердечно-сосудистых заболеваний (ССЗ), 36 пациентов с функциональной стадией КАН в возрасте 50-59 лет, СД-2 — 1-6 лет, показателями гликированного гемоглобина A_{lc} (HbA $_{lc}$) 7,1±0,6%. Контроль: 15 практически здоровых лиц аналогичного возраста (р>0,05). Всем больным был проведен скрининг, включающий 5 кардиоваскулярных тестов [2]. Результаты электрокардиографии (ЭКГ) анализировали с помощью 12-канального электрокардиографа "ЮКАРД-200" (UTAS, Украина); проводили анализ показателей векторкардиографии; анализировали результаты суточного мониторирования артериального давления (монитор АО "ABPM-04" (Meditech, Венгрия)); суточного мониторирования ЭКГ (ЭКГ "EC-3H" (Labtech, Венгрия)); осциллометрии (TensioMedTM Arteriograph 24 (Венгрия); эхокардиографию — Siemens Sonoline Versa Plus (Германия). KAH диагностировали согласно Spallone V. et al, Ткачевой О. Н., Верткину А.Л. [3, 4]. Выделяли субклиническую, функциональную и функционально-органическую стадии [3, 4].

Концентрацию глюкозы в крови определяли глюкозооксидазным методом; НьА, -методом высокочувствительной ионообменной жидкостной хроматографии; иммунореактивного инсулина (ИРИ) — тест-наборов Immunotech Insulin IRMA (Чехия). Расчет индекса инсулиновой резистентности НОМА-ИР (Homeostasis Model Assessment (HOMA) HOMA-ИР) проводили по формуле: ${
m HOMA-UP=}G_{_0}$ x ${
m Ins}_{_0}$ /22,5, где ${
m G}_{_0}$ -уровень глюкозы в крови натощак (ммоль/л); Ins_n — содержание ИРИ в крови натощак (мкМЕ/мл) [5]. Уровень hsСРП в крови определяли с помощью иммуноферментных тест-систем фирмы DRG (США); содержание фактора некроза опухолей (ФНО-а), интерлейкина (ИЛ)-6, ИЛ-8 и ИЛ-10-иммуноферментных тест-систем фирмы Вектор-Бест (Россия); NT-proBNP — твердофазного энзимосвязанного анализа (ELISA) с помощью наборов Biomedica (Австрия).

Статистический анализ проведен вариационно-статистическим методом [6] с использованием параметри-

ческого критерия Стьюдента, непараметрического Wilcoxon, t-критерия Фишера и коэффициента корреляции Пирсона (ANOVA (MicroCal Origin v. 8,0)).

Исследование было проведено в соответствии со стандартами надлежащей клинической практики (Good Clinical Practice) и принципами Хельсинкской декларации (2004). Протокол исследования был одобрен локальным этическим комитетом Львовского областного клинического эндокринологического диспансера. До включения в исследование у всех участников было получено письменное информированное согласие.

Результаты и обсуждение

Как видно из полученных результатов, у больных СД-2 без верифицированных ССЗ наблюдается увеличение концентрации ИРИ (+43,54% по отношению к контролю, p<0,01), hsСРП (+66,66%, p<0,05), провоспалительных цитокинов ФНО- α (+41,89%, p<0,05), ИЛ-6 (+55,34%, p<0,05), ИЛ-8 (+37,66%, p<0,05), содержания противовоспалительного цитокина ИЛ-10 (+44,65%, p<0,05). Коэффициент ФНО-а/ИЛ-10 в данной группе составил 29,2 \pm 4,01% (p>0,05) в сравнении с контрольной (табл. 1). Одновременно наблюдалось увеличение показателей НОМА-ИР (4,36 \pm 0,47, p<0,001).

Функциональная стадия КАН у больных СД-2 сопровождается более выраженными патофизиологическими изменениями исследуемых показателей, а именно прогрессированием ИР: увеличением концентрации ИРИ (+65,01% по отношению к больным СД-2 без ССЗ, $p_1 < 0.001$), HOMA-ИР (+96,33%, $p_1 < 0.01$), увеличением белка острой фазы воспаления hsCPП в 1,9 раза (р,<0,001), активности провоспалительного каскада иммунного ответа: Φ HO- α (+52,93%, p,<0,001), ИЛ-6 $(+83,75\%, p_1<0,001)$, противовоспалительного цитокина ИЛ-10 (+4,82%, но недостоверно). Помимо того, отмечается увеличение показателей коэффициента ФНО-а/ ИЛ-10, который составил $44,2\pm3,57\%$ (p<0,01, p,<0,05), что может свидетельствовать о нарушении цитокинового соотношения, а именно — о наличии компенсаторного типа цитокинового дисбаланса [7].

Установлено, что у больных СД-2 без верифицированных ССЗ наблюдается незначительное и недостоверное увеличение уровня NT-ргоВNР, а именно на 16,29% по сравнению с больными контрольной группы; при функциональной стадии KAH — +91,68% по сравнению с контролем ($p_1 < 0,001$), +64,83% по сравнению с больными СД-2 без верифицированных ССЗ ($p_1 < 0,001$).

У больных СД-2 без верифицированных ССЗ показатели массы миокарда левого желудочка (ММЛЖ) составили 176,1 \pm 7,1 г, что на 13,34% больше по сравнению с контрольной группой (p<0,05); ММЛЖ при функциональной стадии — \pm 52,4% по сравнению с больными СД-2 без ССЗ (p₁<0,001). Установлена прямая корреляционная зависимость между концентрацией NT-proBNP и ММЛЖ (r=0,52, p<0,05).

Таблица 1

Содержание ИРИ, hsCPП и цитокинов в крови пациентов исследуемых групп (M±m)

Показатели	Контрольная группа (n=15)	Больные СД-2 без ССЗ (n=12)	Больные СД-2 и КАН (n=36)
ИРИ, мкМЕ/мл	11,23±0,67	16,12±1,15, p<0,01	26,6±1,73, p<0,001, p ₁ <0,001
NT-proBNP, фмоль/мл	212,33±16,75	246,92±19,12, p>0,05	407,0±23,0, p<0,001, p ₁ <0,001
hsCPП, мг/л	0,51±0,06	0,85±0,07, p<0,05	2,77±0,24, p<0,001, p ₁ <0,001
ФНО-α, пг/мл	2,65±0,36	3,76±0,27, p<0,05	5,75±0,24, p<0,001, p ₁ <0,001
ИЛ-6, пг/мл	2,06±0,35	3,2±0,38, p<0,05	5,88±0,38, p<0,001, p ₁ <0,001
ИЛ-8, пг/мл	3,85±0,27	5,3±0,7, p<0,05	6,65±0,3, p<0,001, p ₁ >0,05
ИЛ-10, пг/мл	10,46±1,08	15,13±1,86, p<0,05	15,86±1,4, p<0,05, p ₁ >0,05

Примечание: p < 0.05, p < 0.01, p < 0.001 — в сравнении с контрольной группой, $p_1 < 0.05$, $p_1 < 0.01$, $p_1 < 0.001$ — в сравнении с группой больных СД-2 без верифицированных ССЗ.

Гиперинсулинемия и/или ИР, хроническая гипергликемия, ожирение, дислипопротеинемия (ДЛП) могут влиять на результаты кардиоваскулярных тестов, показатели интервала QTc путем увеличения концентрации цитозольного Ca^{2^+} . Вероятно, что возможными молекулярными механизмами этих изменений является угнетение активности Na^+ , K^+ -ATФазы, гиперпродукция оксида азота (NO), ингибирование Ca^{2^+} -ATФазы и активация Na^+/H^+ антипорта. Уменьшение доступности NO *in vivo*, которое наблюдается при моделировании острой гипергликемии, вероятно, приводит к увеличению внутриклеточной концентрации Ca^{2^+} [4, 8].

Получены убедительные данные, что даже незначительное увеличение концентрации СРП отражает субклиническое воспаление стенки сосудов. СРП может быть более весомым предиктором развития ССЗ, чем традиционные факторы риска (ДЛП, СД-2 и т.д.). В частности, при увеличении концентрации общего холестерина (ОХС) относительный риск развития инфаркта миокарда в два-три, а при одновременном увеличении содержания СРП и ОХС — в 5 раз выше [9]. Сообщается, что у больных СД-2 наблюдается увеличение концентрации hsCPП, что, вероятно, способствует усилению реактивности на специфические стимулы, которые продуцируют цитокины, в частности, ФНО-а, ИЛ-6 и ИЛ-1β и имеет значение в активации воспалительных процессов. В частности, считается, что провоспалительные цитокины, определяя состояние структурных белков миофибрилл и цитоскелета кардиомиоцитов, влияют на процессы становления и/или прогрессирования диабетических ангио-, нейропатий [9, 10]. Ключевая роль в реализации воспалительной реакции и активации моноцитарно-макрофагального звена иммунитета принадлежит таким цитокинам, как ФНО-а, ИЛ-1 (аи β-формы), ИЛ-6 и др., в то время как трансформирующий фактор роста и ИЛ-10 рассматриваются в качестве эффекторных ингибиторов воспаления [10, 11]. Установлено, что помимо β-адренергических агонистов, различные цитокины, включая ФНО-а и ИЛ-6, также могут вызывать ИР путем стимуляции липолиза в адипоцитах, автокринно повышая, таким образом, концентрацию свободных жирных кислот. ФНО-а стимулирует фосфо-

рилирование остатков серина субстрата рецептора инсулина (IRS-1) и IRS-2, ингибирует активность тирозинкиназы рецепторов инсулина и снижает передачу сигналов, включая активацию фосфатидилинозитола. Более того, ФНО-а активирует липолиз, снижает регуляцию IRS-1 и экспрессию митохондриальных белков, участвующих в миграции транспортера глюкозы GLUT4 [9-11]. Сообщается, что у больных с гипертонической болезнью и ожирением выявлена взаимосвязь между показателями ИР, увеличением активности ФНО-α и индексом массы тела; положительная корреляционная взаимосвязь между уровнем ФНО-а и концентрацией глюкозы, инсулина, НьА, и НОМА-индексами, что подтверждает влияние цитокина на степень нарушений углеводного обмена [10]. Вероятно, единственным представителем эффекторных цитокинов, способных оказывать непосредственное влияние на клетку-мишень и вызывать ее гибель, является ИЛ-6. Уровень ИЛ-6 является прогностическим фактором у пациентов с хронической сердечной недостаточностью (ХСН), имеет значение в поражении нервной системы в условиях гипоксии, в частности при СД [10]. ИЛ-8 вызывает увеличение концентрации внутриклеточного Са²⁺, полимеризацию актина, изменение формы нейтрофилов, их дегрануляцию с "выбросом" лактоферрина, миелопероксидазы. Сообщается, что ИЛ-8 может принадлежать ведущая роль в механизмах развития повреждения тканей при гипоксии с последующей реперфузией [9, 11]. Противовоспалительный цитокин ИЛ-10 может угнетать продукцию ФНО-а и ослаблять его негативные эффекты при ХСН. Сообщается, что более низкие уровни ИЛ-10 у больных СД-2 ассоциируются с большей активацией ФНО-а и увеличением коэффициента ФНО-α/ИЛ-10 по сравнению с пациентами без СД. Возможно, что более высокие уровни ΦНО-α при СД обусловлены относительным дефицитом и, как следствие, уменьшением сдерживающего влияния ИЛ-10. Однако, нельзя исключить и самостоятельную, независимую от ФНО-а, возможно, негативную роль ИЛ-10 [7].

У пациентов с гипертрофией ЛЖ и/или ХСН наблюдают значительное увеличение концентрации BNP и/или неактивного NT-proBNP в крови. Сообщают, что

повышенный уровень BNP в крови может быть маркером ранних микрососудистых осложнений, в частности, диабетической нефро- и ретинопатии; достоверным предиктором возникновения ССЗ у пациентов СД-2 [12]. Увеличение концентрации NT-proBNP в крови зарегистрировано у больных СД-2 и бессимптомной ишемией миокарда по сравнению с пациентами с физиологическим глюкозотолерантным тестом [12], однако не выяснен вопрос, существует ли взаимосвязь между уровнем секреции BNP и развитием макро-и/или микрососудистых осложнений у больных СД-2. Определение концентрации NT-proBNP в крови может быть использовано для скрининга нарушений функционального состояния ЛЖ, прогнозирования бессимптомной ишемии миокарда, последствий ССЗ у больных СД. В частности, относительный риск фатальных последствий ССЗ у бессимптомных больных СД-2 и повышенным содержанием NT-proBNP более чем в 2 раза выше по сравнению с пациентами с физиологическим содержанием NTproBNP, а результаты ряда исследований свидетельствуют, что увеличение концентрации NT-proBNP является четким предиктором присоединения КАН при СД-2, роста общей и сердечно-сосудистой смертности [12-14]. Клинические и экспериментальные наблюдения свидетельствуют, что ишемия — это стимул для увеличения синтеза и, соответственно, концентрации NTproBNP (пропорционального степени атеросклеротического поражения коронарных артерий). Результаты проспективного исследования с участием 250 пациентов СД-2 без верифицированной ишемической болезни сердца и сердечной недостаточности показали значи-

тельное увеличение концентрации NT-proBNP. Сообщается, что увеличение концентрации NT-proBNP в крови у больных СД-2 и ССЗ свидетельствует о более высокой вероятности развития ХСН, инсульта, инфаркта миокарда и летальных исходов [12].

Очевидно, что целесообразно проводить дальнейшие исследования по верификации особенностей взаимосвязи между состоянием метаболизма и структурнофункциональным состоянием миокарда у больных СД-2 и КАН, что позволит улучшить раннюю диагностику и оптимизировать пути коррекции выявленных нарушений.

Заключение

У больных СД-2 и функциональной стадией КАН наблюдается увеличение концентрации ИРИ, показателей HOMA-ИР; содержания NT-proBNP, hsCPП, провоспалительных цитокинов ФНО-а, ИЛ-6 и ИЛ-8, противовоспалительного цитокина ИЛ-10. Помимо того, отмечается увеличение уровня коэффициента ΦΗΟ-α/ ИЛ-10, что может свидетельствовать о нарушении цитокинового соотношения, а именно — о наличии компенсаторного типа цитокинового дисбаланса. Уровень NTproBNP у пациентов СД-2 достоверно и независимо связан с увеличением показателей ММЛЖ. Увеличение концентрации NT-proBNP в крови больных СД-2 коррелирует с присоединением КАН. Полученные результаты позволяют предположить наличие патофизиологических связей между метаболическими, функциональными и структурными нарушениями миокарда у больных СД-2 и КАН.

Литература

- Dimitropoulos G, Tahrani AA, Stevens MJ. Cardiac autonomic neuropathy in patients with diabetes mellitus. World J Diabetes 2014; 5: 17-39.
- Ewing DJ, Martyn CN, Young RJ, et al. The value of cardiovascular autonomic function tests: 10 years experience in diabetes. Diabetes Care 1985; 8: 491-98.
- Spallone V, Ziegler D, Freeman R et al; on behalf of the Toronto Consensus Panel on Diabetic Neuropathy. Cardiovascular autonomic neuropathy in diabetes: clinical impact, assessment, diagnosis, and management. Diabetes Metab Res Rev 2011; 27: 639-53.
- Tkacheva ON, Vertkin AL. Diabetic autonomic neuropathy: guide for physicians. М.: GEOTAR-Media; 2009. Russian (Ткачева О.Н., Верткин А.Л. Диабетическая автономная нейропатия: руководство для врачей. М.: ГЕОТАР-Медиа: 2009).
- Levy JC, Matthews DR, Hermans MP. Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care 1998; 21: 2191-2.
- Lapach SN. Statistical methods in biomedical research using Excel. Kiev: Morion; 2000.
 Russian (Лапач СН. Статистические методы в медико-биологических исследованиях с использованием Excel. Киев: Морион; 2000).
- Serik SA, Chenchik TA, Serdobinskaya-Kanivets EN, et al. Interleukin-10 and the pro-/ anti-inflammatory cytokine balance in heart failure patients with type 2 diabetes mellitus. Ukr Ther J 2012; 3/4: 58-63. Russian (Серик С. А., Ченчик Т. А., Сердобинская-Канивец Э.Н. и др. Интерлейкин-10 и про-/противовоспалительный цитокиновый баланс при сердечной недостаточности у больных сахарным диабетом 2 типа. Укр терапевт журн 2012; 3/4: 58-63).
- Vinik AI, Erbas T, Casellini CM. Diabetic cardiac autonomic neuropathy, inflammation and cardiovascular disease. J Diabetes Investig 2013; 4: 4-18
- Castordi G, Galimberti S, Riva C et al. Association between serum values of C-reactive protein and cytokine production in whole blood of patients with type 2 diabetes. Clin Sci (Lond) 2007; 113(2): 103-8.

- Mirza S, Hossain M, Mathews C et al. Type 2-diabetes is associated with elevated levels of TNF-alpha, IL-6 and adiponectin and low levels of leptin in a population of Mexican Americans: a cross-sectional study. Cytokine 2012; 57: 136-42.
- Semenchenko N, Sharafetdinov KK, Plotnikova OA et al. Markers of immune inflammation in patients with type 2 diabetes and obesity. Vopr Pitan 2013; 82: 46-50. Russian (Семенченко ИЮ, Шарафетдинов XX, Плотникова ОА и др. Маркеры иммунного воспаления у больных сахарным диабетом типа 2 с ожирением. Вопр питания 2013; 82: 46-50).
- Babes E, Babes V, Popescu M, et al. Value of n-terminal pro-b-type natriuretic peptide in detecting silent ischemia and its prognostic role in asymptomatic patients with type 2 diabetes mellitus. Acta Endocrinologica (Buc) 2011; VII(2): 209-18.
- 13. Serhieynko VA. Cardiac autonomic neuropathy in patients with type 2 diabetes mellitus: N-terminal fragment of brain natriuretic peptide and functional-structural changes of the myocardium. Ukr Card Zh 2013; 3:90-5. Ukrainian (Сергієнко В.О. Автономна невропатія серця у хворих на цукровий діабет 2-го типу: N-термінальний фрагмент натрійуретичного мозкового пептиду і функціонально-структурні зміни міокарда. Укр. кард журн 2013; 3: 90-5).
- 14. Serhiyenko VA, Mankovsky BN, Serhiyenko AA. Correlations between the parameters of the arterial wall stiffness, the concentration of the N-terminal fragment of brain natriuretic peptide, functional and structural changes of the myocardium in patients with type 2 diabetes and cardiac autonomic neuropathy. Diabetes Mellitus 2013; 4: 72-7. Russian (Сергиенко В.А., Маньковский Б.Н., Сергиенко А.А. Корреляционная взаимосвязь между параметрами жесткости стенки артерий, концентрации N-терминального фрагмента натрий-уретического мозгового пептида, функционально-структурными изменениями миокарда у больных сахарным диабетом 2 типа и автономной невропатией сердца. Сахарный диабет 2013; 4: 72-7).