ISSN 1560-4071 (print) ISSN 2618-7620 (online)

Анализ предиктивной ценности электрокардиографических, эхокардиографических и гематологических показателей для прогнозирования "новой" фибрилляции предсердий у больных инфарктом миокарда с подъемом сегмента ST после чрескожного коронарного вмешательства

Гельцер Б. И. 1,2 , Шахгельдян К. И. 1,2 , Пак Р. Л. 1,3 , Куксин Н. С. 1,2 , Домжалов И. Г. 1,3 , Кокарев Е. А. 3 , Котельников В. Н. 1

Цель. Сравнительная оценка предиктивного потенциала электрокардиографических. эхокардиографических и гематологических показателей для прогнозирования "новой" фибрилляции предсердий (ФП) у больных инфарктом миокарда с подъемом сегмента ST после чрескожного коронарного вмешательства (ЧКВ) и разработка новых прогностических моделей на основе методов машинного обучения. Материал и методы. Проведено одноцентровое проспективное исследование, в рамках которого анализировали данные 733 больных инфарктом миокарда с полъемом сегмента ST. Было выделено 2 группы лиц, в первую из которых вошли 57 (7,8%) пациентов с впервые зарегистрированной ФП в послеоперационном периоде ЧКВ, а во вторую — 676 (92,2%) больных без нарушения сердечного ритма. Для прогнозирования ФП использовали методы однофакторной и многофакторной логистической регрессии, деревья решений, градиентный бустинг CatBoost.

Результаты. Сравнительный анализ электрокардиографии. эхокардиографии, гематологических и клинических показателей демонстрировал, что наиболее высоким предиктивным потенциалом обладают соотношение нейтрофилов к эозинофилам (NER) >48,7 усл.ед. (отношение шансов (ОШ) 7,1), класс острой сердечной недостаточности по Т. Killip >2 (ОШ 4,44), скорость оседания эритроцитов >36 мм/ч (ОШ 4) и индекс системного воспалительного ответа (SIRI) >5 усл.ед. (ОШ 3,8). Лучшая прогностическая модель "новой" ФП после ЧКВ (AUC=0,806) включала в свою структуру 9 категориальных предикторов: NER >48,7 усл.ед., SIRI >5 усл.ед., скорость оседания эритроцитов >36 мм/ч, PQ >200 мс, 600 мс< RR >1200 мс, систолическое давление в легочной артерии >33,5 мм рт.ст., возраст >66 лет, TIMI <3 и класс острой сердечной недостаточности по Т. Killip >2.

Заключение. Повышение точности прогноза "новой" ФП после ЧКВ может быть достигнуто за счет расширения спектра потенциальных предикторов и использования современных технологий объяснимого искусственного интеллекта.

Ключевые слова: инфаркт миокарда с подъемом сегмента ST, фибрилляция предсердий, чрескожное коронарное вмешательство, машинное обуче-

Отношения и деятельность. Исследование выполнено при финансовой поддержке гранта РНФ 25-21-00165.

¹ФГАОУ ВО Дальневосточный федеральный университет, Владивосток; ²ФГБОУ ВО Владивостокский государственный университет, Владивосток; ³ГБУЗ Приморская краевая клиническая больница № 1, Владивосток, Россия.

Гельцер Б. И. — д.м.н., профессор, член-корр. РАН, зам. директора по научной работе, Школа медицины и наук о жизни; г.н.с., научный образовательный центр "Искусственный интеллект", ORCID: 0000-0002-9250-557X, Шахгельдян К.И. –

д.т.н., доцент, зав. лабораторией анализа больших данных в здравоохранении и медицине, Школа медицины; директор, научный образовательный центр "Искусственный интеллект", ORCID: 0000-0002-4539-685X, Пак Р.Л. — ассистент, Школа медицины и наук о жизни, Департамент клинической медицины: отлеление реанимации и интенсивной терапии регионального сосулистого центра, врач, ORCID: 0009-0004-3745-5399, Куксин Н. С. — аспирант, Институт математики и компьютерных технологий; м.н.с., научный образовательный центр "Искусственный интеллект". ORCID: 0009-0005-9106-0117. Домжалов И.Г. аспирант, Школа медицины и наук о жизни, Департамент клинической медицины; отделение реанимации и интенсивной терапии регионального сосудистого центра, врач, ORCID: 0000-0002-6722-2535, Кокарев Е.А. — к.м.н., зав. отделением реанимации и интенсивной терапии отделения реанимации и интенсивной терапии регионального сосудистого центра, ORCID: 0000-0002-8726-0491, Котельников В.Н.* — д.м.н., профессор, Школа медицины и наук о жизни, Департамент клинической медицины, ORCID: 0000-0001-5830-1322.

*Автор, ответственный за переписку (Corresponding author): 671235@mail.ru

ДИ — доверительный интервал, ИМпST — инфаркт миокарда с подъемом сегмента ST, ЛЖ — левый желудочек, МЛР — многофакторная логистическая регрессия, ОЛР — однофакторная логистическая регрессия, ОСН — острая сердечная недостаточность. ОШ — отношение шансов. СДЛА — систолическое давление в легочной артерии, СОЭ — скорость оседания эритроцитов, ФВ — фракция выброса, ФП — фибрилляция предсердий, ЧКВ — чрескожное коронарное вмешательство, ЭКГ — электрокардиографический/электрокардиограмма, ЭхоКГ эхокардиографический/эхокардиография, NER — нейтрофильно-эозинофильный индекс, NLR — нейтрофильно-лимфоцитарный индекс, SII — индекс системного иммунного воспаления, SIRI — индекс системного воспалительного ответа.

Рукопись получена 16.04.2025 Рецензия получена 09.05.2025 Принята к публикации 08.07.2025

Для цитирования: Гельцер Б.И., Шахгельдян К.И., Пак Р.Л., Куксин Н.С., Домжалов И.Г., Кокарев Е.А., Котельников В.Н. Анализ предиктивной ценности электрокардиографических, эхокардиографических и гематологических показателей для прогнозирования "новой" фибрилляции предсердий у больных инфарктом миокарда с подъемом сегмента ST после чрескожного коронарного вмешательства. Российский кардиологический журнал. 2025;30(8):6353. doi: 10.15829/1560-4071-2025-6353. EDN: JXFOOY

Predictive value of electrocardiographic, echocardiographic and hematological parameters for predicting new-onset atrial fibrillation in patients with ST-segment elevation myocardial infarction after percutaneous coronary intervention

Geltser B.I.^{1,2}, Shakhgeldyan K.I.^{1,2}, Pak R.L.^{1,3}, Kuksin N.S.^{1,2}, Domzhalov I.G.^{1,3}, Kokarev E.A.³, Kotelnikov V.N.¹

Aim. To assessment predictive potential of electrocardiographic, echocardiographic and hematological parameters for predicting new-onset atrial fibrillation (AF) in patients with ST-segment elevation myocardial infarction after percutaneous coronary intervention (PCI), as well as to develop novel prognostic models based on machine learning.

Material and methods. This single-center prospective study included 733 patients with ST-segment elevation myocardial infarction. Two following groups were identified: the first - 57 (7,8%) patients with new-onset postoperative AF after PCI, and the second -676 (92,2%) patients without cardiac arrhythmia. To predict AF, univariate and multivariate logistic regression, decision trees, CatBoost gradient boosting were used.

Results. Comparative analysis of electrocardiography, echocardiography, hematological and clinical data demonstrated that following parameters has the highest predictive potential: neutrophil-to-eosinophil ratio (NER) >48,7 (odds ratio (OR) 7,1), Killip class >2 acute heart failure (OR 4,44), erythrocyte sedimentation rate (ESR) >36 mm/h (OR 4) and systemic inflammatory response index (SIRI) >5 (OR 3,8). The best prognostic model of new-onset AF after PCI (AUC=0,806) included 9 following categorical predictors: NER >48,7 conventional units, SIRI >5 conventional units, erythrocyte sedimentation rate >36 mm/h, PQ >200 ms, 600 ms< RR >1200 ms, pulmonary artery systolic pressure >33,5 mm Hg, age >66 years, TIMI <3 and Killip class >2 acute heart failure. **Conclusion.** Improving the accuracy of predicting new-onset AF after PCI can be achieved by expanding the range of potential predictors and using modern explainable artificial intelligence technologies.

Keywords: ST-segment elevation myocardial infarction, atrial fibrillation, percutaneous coronary intervention, machine learning, prediction.

Relationships and Activities. The study was supported by the grant of the Russian Science Foundation 25-21-00165.

¹Far Eastern Federal University, Vladivostok; ²Vladivostok State University, Vladivostok; ³Primorsky Regional Clinical Hospital № 1, Vladivostok, Russia.

Geltser B.I. ORCID: 0000-0002-9250-557X, Shakhgeldyan K.I. ORCID: 0000-0002-4539-685X, Pak R.L. ORCID: 0009-0004-3745-5399, Kuksin N.S. ORCID: 0009-0005-9106-0117, Domzhalov I.G. ORCID: 0000-0002-6722-2535, Kokarev E.A. ORCID: 0000-0002-8726-0491, Kotelnikov V.N.* ORCID: 0000-0001-5830-1322.

*Corresponding author: 671235@mail.ru

Received: 16.04.2025 Revision Received: 09.05.2025 Accepted: 08.07.2025

For citation: Geltser B.I., Shakhgeldyan K.I., Pak R.L., Kuksin N.S., Domzhalov I.G., Kokarev E.A., Kotelnikov V.N. Predictive value of electrocardiographic, echocardiographic and hematological parameters for predicting new-onset atrial fibrillation in patients with ST-segment elevation myocardial infarction after percutaneous coronary intervention. *Russian Journal of Cardiology*. 2025;30(8):6353. doi: 10. 15829/1560-4071-2025-6353. EDN: JXFOOY

Ключевые моменты

- Наиболее высоким предиктивным потенциалом для прогнозирования "новой" фибрилляции предсердий (ФП) у больных инфарктом миокарда с подъемом сегмента ST (ИМпST) после чрескожного коронарного вмешательства (ЧКВ) обладают: соотношение нейтрофилов к эозинофилам, класс острой сердечной недостаточности по Т. Killip, скорость оседания эритроцитов, индекс системного воспалительного ответа.
- Электрокардиографические и эхокардиографические показатели в изолированной форме имели меньшую прогностическую ценность.
- Структура лучшей прогностической модели "новой" ФП у больных ИМпST после ЧКВ, разработанной на основе многофакторной логистической регрессии, включала 9 предикторов в категориальной форме.

Фибрилляция предсердий (ФП) является одним из наиболее распространенных нарушений ритма сердца у больных инфарктом миокарда с подъемом сегмента ST (ИМпST). Впервые возникшая или "новая" ФП фиксируется у 6-21% больных ИМпST и ассоциируется прежде всего со значительным увеличением нежелательных сердечно-сосудистых событий и госпитальной летальности [1, 2]. Широкая вариативность показателей распространенности этой формы ФП в различных исследованиях обусловлена клиникодемографическими особенностями анализируемых когорт, локализацией и тяжестью ИМпST, профилем и выраженностью коморбидной патологии, эффективностью чрескожного коронарного вмешательства (ЧКВ) и другими факторами.

Key messages

- The highest predictive potential for new-onset atrial fibrillation (AF) in patients with ST-segment elevation myocardial infarction (STEMI) after percutaneous coronary intervention (PCI) has neutrophilto-eosinophil ratio, acute heart failure Killip class, erythrocyte sedimentation rate, systemic inflammatory response index.
- Electrocardiographic and echocardiographic parameters in isolated form had lower prognostic value.
- The structure of the best prognostic model of newonset AF in patients with STEMI after PCI, developed on the basis of multivariate logistic regression, included 9 categorical predictors.

Развитие "новой" ФП в остром периоде ИМпST обусловлено реализацией комплекса патофизиологических механизмов, ключевыми из которых являются ишемия предсердий, их перегрузка, острое ремоделирование и нарушение электрической активности [3]. В ряде работ к электрокардиографическим (ЭКГ) предикторам этой формы $\Phi\Pi$ относили расширение зубца Р (>110 мс), его дисперсию, удлинение интервала PQ >200 мс или его укорочение <120 мс [4]. Прогностическими свойствами в отношении "новой" ФП обладают также эхокардиографические (ЭхоКГ) показатели дилатации левого предсердия, сниженной фракции выброса (ФВ) левого желудочка (ЛЖ), клапанной патологии [5]. В последние годы в качестве индикаторов воспалительного ответа, демонстрирующих его интенсивность, помимо изолированных показателей клинического анализа крови, все чаще используют различные варианты их соотношений, наиболее известными из которых являются нейтрофильно-лимфоцитарный индекс (NLR), индексы системного иммунного воспаления (SII), системного воспалительного ответа (SIRI), совокупный системный индекс воспаления (AISI) и др. Некоторые из них в ряде исследований были представлены как предикторы жизнеугрожающих аритмий после ЧКВ, что подтверждает важную роль провоспалительных факторов в патогенезе данного осложнения [6]. ЧКВ является доминирующей стратегией реваскуляризации миокарда, эффективность которой оценивают по шкале TIMI (Thrombolysis in Myocardial Infarction). В патогенезе ФП, возникшей после ЧКВ, важное значение принадлежит ишемическим и реперфузионным факторам, интенсивность влияния которых на аритмогенез зависит от сроков и качества выполненной реваскуляризации [7]. Необходимо также отметить, что в настоящее время не разработаны общепринятые инструменты стратификации риска "новой" ФП у больных ИМпST, в т.ч. после ЧКВ [8]. Это обусловлено отсутствием надежных предикторов этого осложнения, что является поводом для более детальной оценки прогностической ценности инструментальных и лабораторных показателей, используемых в повседневной клинической практике.

Цель исследования состояла в сравнительной оценке предиктивного потенциала ЭКГ, ЭхоКГ и гематологических показателей для прогнозирования "новой" ФП у больных с ИМпST после ЧКВ.

Материал и методы

Данные. Проведено одноцентровое проспективное когортное исследование, в рамках которого анализировали данные 733 больных ИМпST (499 мужчин и 234 женщины) в возрасте от 23 до 97 лет с медианой (Ме) 63 года и 95% доверительным интервалом (ДИ) [55; 71], поступивших в Региональный сосудистый центр ГБУЗ "Приморская краевая клиническая больница № 1" г. Владивостока с апреля 2024 по февраль 2025 гг. Критерии включения: пациенты с диагнозом ИМпST, которым было выполнено ЧКВ. Критерии исключения: пациенты с ИМпST, у которых фиксировалась любая форма ФП при поступлении в стационар или имеющая место в анамнезе. Было выделено 2 группы лиц, в первую из которых вошли 57 (7,8%) пациентов с впервые зарегистрированной ФП после выполнения ЧКВ, а во вторую — 676 (92,2%) больных без нарушения сердечного ритма. Наличие ФП подтверждали посредством непрерывного мониторинга ЭКГ в отделении реанимации и интенсивной терапии и ежедневного ЭКГ-контроля в кардиологическом отделении. Всем пациентам в первые сутки нахождения в стационаре проведен забор венозной крови, выполнена ЭхоКГ.

Конечная точка исследования была представлена впервые возникшей $\Phi\Pi$ у больных ИМпST в форме категориального бинарного признака ("отсутствие"

или "развитие"). Входные признаки — подгруппа потенциальных предикторов выражалась в форме непрерывных и категориальных переменных.

Статистический анализ. Для обработки и анализа данных использовали методы статистического анализа и машинного обучения. Первые включали тесты хи-квадрат, Фишера, Манна-Уитни, однофакторную логистическую регрессию (ОЛР). Вторые — многофакторную логистическую регрессию (МЛР), градиентный бустинг CatBoost и деревья решений, с помощью которых разрабатывали прогностические модели "новой" ФП. Показатели были представлены Ме и их 95% ДИ, т.к. их распределение не соответствовало нормальному. Статистическая значимость подтверждалась значением p-value<0,05. Качество моделей оценивали по 3 метрикам: площадь под ROC-кривой (AUC), чувствительность (Sen) и специфичность (Sp). Метрики Sen и Sp определялись с учетом несбалансированности выборки по критерию равенства Sen и Sp (Sen \approx Sp).

При построении моделей данные были разделены следующим образом: 80% — для обучения и кроссвалидации, которая проводилась методом стратифицированного KFold по 10 выборкам, и 20% — для заключительного тестирования. Разделение данных для обучения и заключительного тестирования повторялось случайным образом 100 раз, все метрики качества усредняли с вычислением 95% ДИ.

Дизайн исследования. Дизайн исследования включал 4 этапа. На первом из них проведен статистический анализ 38 показателей в группах сравнения. На втором этапе с помощью метода CatBoost разрабатывали прогностические модели ФП, используя показатели в непрерывной или дискретной форме. Отбор предикторов выполнялся пошаговым включением отдельных признаков в структуру моделей с последующей оценкой их метрик качества. При увеличении последних, включенный в модель показатель рассматривали как предиктор ФП. На третьем шаге с помощью деревьев решений определяли пороговые значения предикторов, выделенных на втором этапе, критериями отбора которых были максимальные уровни АUC при итоговом тестировании.

Показатели, значения которых отклонялись за пределы пороговых границ, относили к факторам риска ФП. Последние валидировали методом ОЛР, максимально увеличивая АUC. На четвертом этапе на основе МЛР были разработаны прогностические модели "новой" ФП с использованием предикторов в дихотомической форме. Анализ данных и разработка моделей выполнялись на языке Python.

Результаты

Межгрупповой анализ клинико-функциональных параметров показал, что статистически значимые различия имеют место у 19 из 38 показателей (табл. 1).

Таблица 1 Клинико-функциональные показатели больных ИМпST при поступлении в стационар

Показатели	Группа 1 (n=57)	Группа 2 (n=676)	p-value
Возраст, лет	68 [61; 75]	63 [55; 70,25]	0.0017
Женский пол, n (%)	22 (39%)	205 (31%)	0,3
ГЛ, n (%)	5 (8,8%)	21 (3,2%)	0,049
ИМТ, кг/м ²	28,08 [25,71; 32,05]	27,46 [25,14; 30,48]	0,136
САД, мм рт.ст.	130 [110; 140]	130 [120; 150]	0,068
ДАД, мм рт.ст.	80 [70; 90]	80 [80; 90]	0,055
ЧСС, уд./мин	75 [70; 80]	72 [70; 80]	0,49
ОСН по Т. Killip >2, n (%)	16 (28%)	99 (15%)	0.016
Параметры ЭКГ	(20%)		0,010
P, MC	100 [80; 100]	100 [80; 100]	0,98
PQ, MC	170 [160; 195]	160 [160; 180]	0,568
QRS, MC	80 [60; 80]	70 [60; 80]	0,253
QT, MC	360 [340; 400]	360 [340; 400]	0,88
QTc, Mc	417,76 [371,1; 438,75]	408,6 [381,88; 434,06]	0,64
RR, MC	760 [620; 1000]	800 [700; 920]	0,672
Эхокардиографические данные	700 [020, 1000]	000 [100, 020]	5,572
ФВ, п (%)	50 [45; 54]	54 [48; 60]	0,013
ΦB ≤45%, n (%)	15 (26%)	105 (16%)	0,081
MH 1 степени, n (%)	29 (51%)	269 (41%)	0,022
МН 2 степени, п (%)	8 (14%)	57 (8,6%)	0,029
HTK 1 степени, n (%)	17 (30%)	164 (25%)	0,057
КДР ЛЖ, см	5 [4,6; 5,3]	4,9 [4,6; 5,3]	0,23
КСР ЛЖ, см	3,6 [3,3; 3,9]	3,4 [3,1; 3,8]	0,02
La1, cm	4 [3,7; 4,3]	3,8 [3,5; 4,1]	0,025
La2, cm	5,1 [4,7; 5,6]	4,9 [4,6; 5,2]	0,0049
Ra1, cM	3,6 [3,5; 3,9]	3,6 [3,3; 3,8]	0,14
Ra2, cm	4,8 [4,6; 5,1]	4,6 [4,4; 4,9]	0,043
СДЛА, мм рт.ст.	30 [26; 37]	28 [25; 30]	0,025
Гематологические индикаторы воспал		20 [20, 00]	0,020
NLR, усл.ед.	4,39 [2,93; 6,74]	3,16 [2,23; 4,99]	0,0012
PLR, усл.ед.	114,36 [78,27; 144,83]	113,1 [86,18; 151,44]	0,72
мLR, усл.ед.	0,53 [0,33; 0,62]	0,39 [0,29; 0,52]	0,0092
NER, усл.ед.	125,06 [69,53; 294,42]	60,38 [32,73; 149,6]	0,000002
NBR, усл.ед.	341 [144,32; 422,83]	185,33 [119,8; 308,5]	0,00093
SII, усл.ед.	939,25 [592,53; 1468,45]	735,38 [478,1; 1165,16]	0,038
SIRI, усл.ед.	3,81 [2,28; 6,69]	2,52 [1,59; 4,2]	0,0013
AISI, усл.ед.	835,94 [409,3; 1386,46]	557,93 [336,06; 1017,43]	0,029
СОЭ, мм/ч	31 (14; 46)	16 (9; 29)	0,00023
Результат ЧКВ	51 (1 4 , 4 0)	10 (0, 20)	0,00020
TIMI =3	4 (77%)	599 (91%)	0,024
TIMI <3	13 (23%)	57 (9%)	0,0013
THVII NO	10 (2070)	01 (970)	0,0010

Сокращения: ГЛ — госпитальная летальность, ДАД — диастолическое артериальное давление, ИМТ — индекс массы тела, КДР ЛЖ — конечно-диастолический размер левого желудочка, КСР ЛЖ — конечно-систолический размер левого желудочка, МН — митральная недостаточность, НТК — недостаточность трикуспидального клапана, ОСН — острая сердечная недостаточность, САД — систолическое артериальное давление, СДЛА — систолическое давление в легочной артерии, СОЭ — скорость оседания эритроцитов, ФВ — фракция выброса, ЧКВ — чрескожное коронарное вмешательство, ЧСС — частота сердечных сокращения, ЭКГ — электрокардиография, AISI — совокупный системный индекс воспаления, La1 — медиально-латеральный размер левого предсердия в апикальной проекции, La2 — верхне-нижний размер левого предсердия в апикальной проекции, МLR — моноцитарно-лимфоцитарный индекс, NBR — отношение нейтрофилов к базофилам, NER — отношение нейтрофилов к озоинофилам, NLR — нейтрофильно-лимфоцитарный индекс, NRL — нейтрофильно-лимфоцитарный индекс, PLR — тромбоцитарно-лимфоцитарный индекс, Ra1 — медиально-латеральный размер правого предсердия в апикальной проекции, Ra2 — верхне-нижний размер правого предсердия в апикальной проекции, Ra2 — верхне-нижний размер правого предсердия в апикальной проекции, Ra2 — верхне-нижний размер правого предсердия в апикальной проекции, Ra2 — верхне-нижний размер правого предсердия в апикальной проекции, Ra2 — верхне-нижний размер правого предсердия в апикальной проекции, Ra2 — верхне-нижний размер правого предсердия в апикальной проекции, Ra2 — верхне-нижний размер правого предсердия в апикальной проекции, Ra2 — верхне-нижний размер правого предсердия в апикальной проекции, Ra2 — верхне-нижний размер правого предсердия в апикальной проекции, Ra2 — верхне-нижний размер правого предсердия в апикальной проекции прежем преже

Таблица 2
Оценка точности прогностических моделей "новой" ФП после ЧКВ у больных ИМпST,
разработанных на основе предикторов в непрерывной форме (Ме, 95% ДИ)

Nº	№ Предикторы моделей	Тестовые выборки			Выборки для валидации		
		Auc	Sen	Sp	Auc	Sen	Sp
1	NER, MLR, SIRI, CO9	0,726 [0,713; 0,738]	0,659 [0,634; 0,683]	0,659 [0,642; 0,676]	0,723 [0,688; 0,758]	0,692 [0,634; 0,752]	0,653 [0,615; 0,691]
2	NER, MLR, SIRI, СОЭ, СДЛА	0,73 [0,725; 0,734]	0,681 [0,672; 0,69]	0,685 [0,682; 0,688]	0,74 [0,729; 0,752]	0,703 [0,68; 0,727]	0,681 [0,673; 0,69]
3	NER, MLR, SIRI, СОЭ, СДЛА, RR, PQ, возраст	0,754 [0,75; 0,758]	0,7 [0,69; 0,711]	0,673 [0,669; 0,677]	0,762 [0,751; 0,774]	0,712 [0,687; 0,737	0,68 [0,671; 0,688]
4	NER, MLR, SIRI, СОЭ, СДЛА, RR, PQ, возраст, TIMI	0,758 [0,753; 0,762]	0,713 [0,704; 0,721]	0,695 [0,691; 0,699]	0,761 [0,747; 0,775]	0,697 [0,668; 0,726]	0,7 [0,692; 0,709]
5	NER, MLR, SIRI, СОЭ, СДЛА, RR, PQ, возраст, ТІМІ, класс ОСН по Т. Killip	0,763 [0,758; 0,767]	0,719 [0,71; 0,728]	0,708 [0,704; 0,711]	0,767 [0,754; 0,78]	0,723 [0,695; 0,751]	0,714 [0,706; 0,721]

Сокращения: ОСН — острая сердечная недостаточность, СДЛА — систолическое давление в легочной артерии, СОЭ — скорость оседания эритроцитов, MLR — моноцитарно-лимфоцитарный индекс, NER — отношение нейтрофилов к эозинофилам, SIRI — индекс системного воспалительного ответа, TIMI — шкала "Thrombolysis In Myocardial Infarction".

Таблица 3 Пороговые значения предикторов "новой" ФП у больных ИМпST после ЧКВ

Nº	Параметр	Группа 1 (n=57)	Группа 2 (n=676)	ОШ (95%) ДИ	p-value	AUC
1	СДЛА >33,5 мм рт.ст.	20 (35,1%)	99 (15%)	2,96 [1,65; 5,31]	0,00065	0,596
2	La2 >5,5 см и Ra2 >5,2 см	19 (33,3%)	120 (18,3%)	2,17 [1,2; 3,9]	0,014	0,578
3	NER >48,7 усл.ед.	52 (91%)	370 (56%)	7,1 [2,8; 18,05]	<0,000001	0,66
4	MLR >0,526 усл.ед.	29 (49%)	154 (23,5%)	3,2 [1,85; 5,55]	0,000058	0,638
5	SIRI >5 усл.ед.	26 (45,6%)	114 (17,4%)	3,8 [2,17; 6,64]	0,000007	0,641
6	СОЭ >36 мм/ч	23 (40,4%)	89 (13,6%)	4 [2,26; 7,13]	0,000006	0,633
7	PQ >200 мc	10 (17,5%)	140 (21,3%)	0,82 [0,4; 1,7]	0,718	0,516
8	RR <600 мс или RR >1200 мс	18 (31,5%)	98 (14,9%)	2,7 [1,48; 4,98]	0,002	0,594
9	Возраст >66 лет	36 (63,1%)	263 (40,1%)	2,56 [1,46; 4,49]	0,0011	0,6112
10	TIMI <3	13 (22,8%)	57 (8,7%)	3,1 [1,58; 6,1]	0,0014	0,572
11	Класс ОСН по Т. Killip >2	10 (17,5%)	30 (4,6%)	4,44 [2; 9,6]	0,00062	0,567

Сокращения: ДИ — доверительный интервал, ОСН — острая сердечная недостаточность, ОШ — отношение шансов, СДЛА — систолическое давление в легочной артерии, СОЭ — скорость оседания эритроцитов, La2 — верхне-нижний размер левого предсердия, MLR — моноцитарно-лимфоцитарный индекс, NER — отношение нейтрофилов к эозинофилам, Ra2 — верхне-нижний размер правого предсердия, SIRI — индекс системного воспалительного ответа, TIMI — шкала "Thrombolysis In Myocardial Infarction".

Так, пациенты первой группы отличались более старшим возрастом, преобладанием лиц женского пола, значительным (в 2,75 раза) ростом госпитальной летальности и 2-кратным увеличением случаев тяжелой сердечной недостаточности (класс острой сердечной недостаточности (ОСН) по Т. Killip >2). При этом медианные значения индекса массы тела, систолического артериального давления, диастолического артериального давления, частоты сердечных сокращений и всех показателей ЭКГ не отличались между собой. По данным ЭхоКГ у больных ИМпST с впервые возникшей ФП после ЧКВ чаще фиксировались признаки митральной недостаточности 1-2 степени, более высокий уровень систолического давления в легочной артерии (СДЛА), конечно-систолический размер, увеличение медиально-латерального (La1) и верхне-нижнего (La2)

размеров левого предсердия, медиально-латерального (Ra2) размера правого предсердия, более низкое значение ФВ ЛЖ. Среди 9 гематологических показателей, характеризующих выраженность системного воспалительного ответа на острую ишемию и некроз кардиомиоцитов, только тромбоцитарно-лимфоцитарный индекс (PLR) не имел линейной взаимосвязи с "новой" ФП (p-value=0,72). Остальные параметры этого пула демонстрировали статистически значимые различия в группах сравнения.

Предварительный анализ предиктивной ценности гематологических показателей, проведенный на 1 этапе исследования, показал, что более высокая статистическая значимость ассоциируется с нейтрофильно-эозинофильным индексом (NER) (p-value=0,000002), скоростью оседания эритроци-

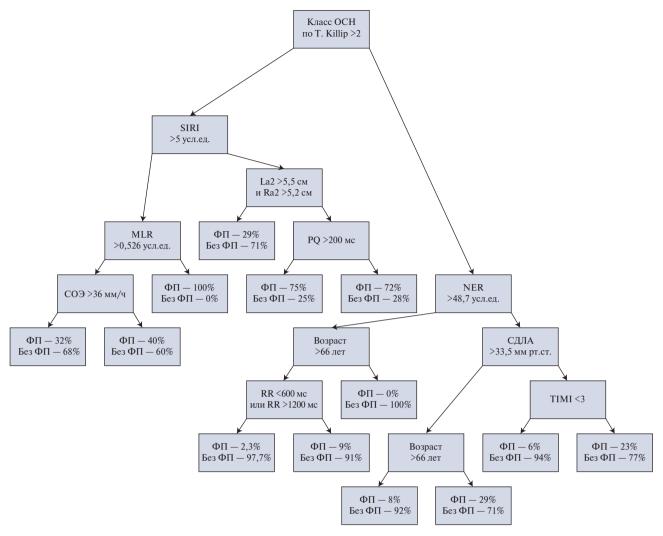
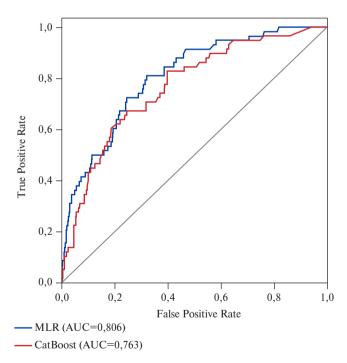


Рис. 1. Дерево решений для выделения пороговых значений предикторов "новой" ФП.

Сокращения: ОСН — острая сердечная недостаточность, СДЛА — систолическое давление в легочной артерии, СОЭ — скорость оседания эритроцитов, ФП — фибрилляция предсердий, La2 — верхне-нижний размер левого предсердия, MLR — моноцитарно-лимфоцитарный индекс, NER — нейтрофильноэозинофильный индекс, Ra2 — верхне-нижний размер правого предсердия, SIRI — индекс системного воспалительного ответа.

тов (СОЭ) (p-value=0,00023), нейтрофильно-базофильным индексом (NBR) (p-value=0,00093), SIRI (p-value=0,0013), моноцитарно-лимфоцитарным индексом (MLR) (p-value=0,0092), совокупным системным индексом воспаления (AISI) (p-value=0,023). Анализ качества реваскуляризации миокарда по критерию ТІМІ показал, что у пациентов с "новой" ФП признак неполного восстановления коронарной перфузии после ЧКВ (ТІМІ <3) фиксировался значительно чаще, чем у лиц без нарушения сердечного ритма (23% vs 9%, p-value=0,0013).

На втором этапе исследования предиктивный потенциал анализируемых факторов уточняли в процессе разработки прогностических моделей ФП, где все показатели использовались в непрерывной форме (табл. 2). Структура базовой модели включала комбинацию только гематологических показателей (NER, MLR, SIRI и COЭ), т.к. при тестировании предска-


зательной ценности изолированных параметров ЭКГ, ЭхоКГ или их комплексов прогностическая точность моделей на их основе не соответствовала приемлемому уровню (AUC<0,7). Наилучшие показатели метрик качества были у модели 5, включающей помимо гематологических индикаторов показатели СДЛА, RR, PQ, возраст, ТІМІ и класс ОСН по Т. Killip (AUC=0,763; Sen=0,719; Sp=0,708).

На третьем этапе исследования с помощью деревьев решений и ОЛР у ранее отобранных предикторов, входящих в структуру лучшей модели (5), выделяли и валидировали пороговые значения, отклонение от которых повышало их прогностическую ценность и позволяло отнести к факторам риска ФП, развившейся после ЧКВ (табл. 3, рис. 1). Установлено, что наибольшая вероятность возникновения последней ассоциировалась с NER >48,7 усл.ед. (отношение шансов (ОШ) 7,1), класс ОСН по Т. Killip >2 (ОШ 4,44),

Таблица 4
Оценка точности прогностических моделей "новой" ФП у больных ИМпST после ЧКВ,
разработанных на основе категориальных предикторов (Ме, 95% ДИ)

Nº	Предикторы моделей	Тестовые выборки			Выборки для валидации		
		Auc	Sen	Sp	Auc	Sen	Sp
1	NER >48,7 усл.ед., SIRI >5 усл.ед., COЭ >36 мм/ч	0,757 [0,753; 0,76]	0,686 [0,676; 0,695]	0,7 [0,682; 0,718]	0,774 [0,763; 0,786]	0,715 [0,69; 0,74]	0,713 [0,685; 0,741]
2	NER >48,7 усл.ед., SIRI >5 усл.ед., COЭ >36 мм/ч, СДЛА >33,5 усл.ед.	0,776 [0,773; 0,78]	0,732 [0,721; 0,743]	0,733 [0,73; 0,736]	0,785 [0,774; 0,796]	0,782 [0,76; 0,803]	0,724 [0,716; 0,732]
3	NER >48,7 усл.ед., SIRI >5 усл.ед., COЭ >36 мм/ч, PQ >200 мс, RR >1200 мс или RR <600 мс, СДЛА >33,5 мм рт.ст.	0,783 [0,779; 0,786]	0,716 [0,706; 0,725]	0,729 [0,725; 0,732]	0,785 [0,773; 0,797]	0,724 [0,698; 0,75]	0,728 [0,719; 0,737]
4	NER >48,7 усл.ед., SIRI >5 усл.ед., COЭ >36 мм/ч, PQ >200 мс, RR >1200 мс или RR <600 мс, СДЛА >33,5 мм рт.ст., возраст >66 лет	0,789 [0,786; 0,793]	0,735 [0,727; 0,742]	0,74 [0,735; 0,745	0,791 [0,78; 0,802]	0,743 [0,718; 0,768]	0,747 [0,736; 0,758]
5	NER >48,7 усл.ед., SIRI >5 усл.ед., COЭ >36 мм/ч, PQ >200 мс, RR >1200 мс или RR <600 мс, СДЛА >33,5 мм рт.ст., возраст >66 лет, ТІМІ <3	0,802 [0,798; 0,805]	0,768 [0,761; 0,776]	0,757 [0,754; 0,759]	0,8 [0,789; 0,812]	0,761 [0,737; 0,785]	0,759 [0,751; 0,767]
6	NER >48,7 усл.ед., SIRI >5 усл.ед., COЭ >36 мм/ч, PQ >200 мс, RR >1200 мс или RR <600 мс, СДЛА >33,5 мм рт.ст., возраст >66 лет, TIMI <3, класс ОСН Т. Killip >2	0,806 [0,802; 0,81]	0,769 [0,76; 0,779]	0,769 [0,767; 0,771]	0,809 [0,797; 0,82]	0,769 [0,742; 0,796]	0,769 [0,763; 0,776]

Сокращения: OCH — острая сердечная недостаточность, СДЛА — систолическое давление в легочной артерии, COЭ — скорость оседания эритроцитов, NER — отношение нейтрофилов к эозинофилам, SIRI — индекс системного воспалительного ответа, TIMI — шкала "Thrombolysis In Myocardial Infarction".

Рис. 2. График ROC AUC лучших моделей с непрерывными (CatBoost) и категориальными (MLR) предикторами.

Сокращение: MLR — моноцитарно-лимфоцитарный индекс.

CO9 > 36 (ОШ 4), SIRI >5 усл.ед. (ОШ 3,8), MLR усл.ед. >0,256 (ОШ 3,2) и ТІМІ <3 (ОШ 3,1), СДЛА >33,5 мм рт.ст. (ОШ 2,96), длительностью RR <600 мс

или RR >1200 мс (ОШ 2,7). Более чем 2-кратное увеличение риска послеоперационной $\Phi\Pi$ было связано с возрастом пациентов старше 66 лет (ОШ 2,56), верхне-нижними размерами правого (>5,2 см) и левого (>5,5 см) предсердий (ОШ 2,17).

На четвертом этапе исследования на основе МЛР были разработаны прогностические модели "новой" ФП, структура которых была представлена предикторами в категориальной форме (факторами риска) (табл. 4). Базовая модель (1), включающая только гематологические параметры (NER, SIRI и СОЭ), имела приемлемую точность прогноза (AUC=0,757). Последовательное расширение состава предикторов этой модели за счет показателей ЭхоКГ (СДЛА >33,5 мм рт.ст.), ЭКГ (PQ >200 мс, RR <600 мс или RR >1200 мс) позволило увеличить метрику АUC до 0,783 (модель 3). Наиболее высокий уровень AUC, соответствующий хорошей точности прогноза (AUC=0,806 на тестовой выборке и 0,809 — на выборке для валидации), был достигнут в модели (6), при включении в ее структуру показателя возраста больных >66 лет, ангиографического критерия TIMI <3 и класса ОСН по Т. Killip >2 (рис. 2).

Обсуждение

ФП относится к наиболее распространенным вариантам нарушений сердечного ритма при ИМ. Её клиническое значение определяется ухудшением прогноза ближайших и отдаленных результатов реваскуляриза-

ции миокарда и возрастающим риском госпитальной летальности [9]. Выделяют две основных формы ФП, ассоциированные с ИМ: хроническую, предшествующую его развитию и впервые возникшую или "новую" ФП, доля которой может достигать 70% [3]. К подтипам "новой" ФП относят варианты ее развития в периоды до или после реваскуляризации миокарда, выделение которых может быть полезным для более точной оценки инициирующих ее факторов и патофизиологических механизмов [10]. Реперфузионные аритмии, связанные с ЧКВ, имеют место у 11% больных ИМпST и могут быть проявлениями как успешного восстановления коронарного кровотока, так и продолжающегося ишемического повреждения кардиомиоцитов [11]. Многообразие и сложность причинноследственных взаимосвязей различных патогенетических факторов "новой" ФП являются препятствием для разработки универсального прогностического инструмента, позволяющего стратифицировать риск развития данного осложнения после ЧКВ [9]. Вместе с тем интерес к решению данной задачи иллюстрируется многочисленными публикациями, связанными с поиском надежных предикторов $\Phi\Pi$ [5, 8, 9]. К последним чаще всего относят высокий класс ОСН по Т. Killip, пожилой или старческий возраст больных, увеличение размеров левого предсердия, ИМ в анамнезе, низкую ФВ ЛЖ, неуспешность реваскуляризации миокарда [8]. Одной из проблем этих исследований является недостаточная точность разработанных прогностических моделей, на что указывали значения AUC<0,7 [6]. В ряде работ авторы добивались приемлемой точности прогноза (AUC в диапазоне 0,7-0,79) [6, 12]. В нашем исследовании сопоставимый результат (AUC=0,726-0,763) был получен уже при разработке моделей машинного обучения методом CatBoost на основе предикторов в непрерывной форме (табл. 2, модели 1-5). В ряде работ было показано, что категоризация непрерывных переменных с определением их пороговых значений повышает качество прогноза за счет клинического обоснования предсказанной вероятности неблагоприятных событий [13]. Результаты настоящего исследования демонстрировали взаимосвязь "новой" ФП после ЧКВ с комплексом клиникоинструментальных и лабораторных показателей в категориальной форме, а построение на их основе моделей МЛР позволило не только повысить точность прогноза (AUC=0,806), но и расширить возможности для интерпретации генерируемых заключений. Необходимо отметить, что несмотря на невысокий уровень AUC изолированных факторов риска, их комбинация в многофакторной модели обеспечивала хорошее качество прогноза за счет взаимосвязанного и модифицирующего влияния на конечную точку.

Сравнительный анализ предиктивной ценности показателей ЭКГ, ЭхоКГ и индикаторов воспалительного ответа показал, что приемлемый результат про-

гноза могла обеспечить только комбинация гематологических маркеров как в непрерывной (AUC=0,726), так и в категориальной (AUC=0,757) формах. При этом более заметными предсказательными свойствами обладали NER >48,7 усл.ед. (ОШ 7,1), СОЭ >36 мм/ч (ОШ 4) и SIRI >5 (ОШ 3,8). В ряде исследований была доказана информативность SIRI как индикатора воспалительного ответа, обладающего предиктивным потенциалом для решения прогностических задач при различных заболеваниях, в т.ч. инфаркта миокарда [14]. При этом NER в качестве прогностического маркера упоминается значительно реже, несмотря на доказанное значение эозинопении и нейтрофильного лейкоцитоза как маркеров неблагоприятных клинических событий [6]. Установлено, что качество восстановления коронарного кровотока после ЧКВ тесно связано с вероятностью развития ФП. Неуспешность ЧКВ или проявления реперфузионного синдрома миокарда усиливают процессы его повреждения, стимулируя ремоделирование и электрическую нестабильность предсердий [15]. В нашем исследовании включение в структуру модели (5) критерия TIMI < 3 повышало точность прогноза (табл. 4). Клинические признаки нарастающей левожелудочковой недостаточности при ИМпST являются классическим предиктором неблагоприятных сердечно-сосудистых событий, риск развития которых чаще всего стратифицируется по шкале GRACE. В нашей работе на этапе категоризации анализируемых факторов класс ОСН по Т. Killip >2 ассоциировался с высокой вероятностью "новой" ФП после ЧКВ (ОШ 4,44). Расширение спектра предикторов модели (6) за счет этого показателя увеличивало метрику AUC. Среди ЭКГ параметров прогностическими свойствами в отношении "новой" ФП после ЧКВ обладали только два показателя: PQ >200 мс и 600 мс< RR >1200 мс. Реализация их предиктивного потенциала обеспечивалась при комбинации с гематологическими показателями и СДЛА >33,5 мм рт.ст. в модели (3) (AUC=0,783). Категориальный признак СДЛА был единственным ЭхоКГ-параметром, имеющим прогностический ресурс для оценки вероятности развития "новой" ФП.

Ограничения исследования. Ограничения исследования связаны с его одноцентровым характером, необходимостью увеличения выборки больных, валидации моделей на когортах больных ИМпST из других лечебных учреждений.

Заключение

Прогнозирование "новой $\Phi\Pi$ " у больных ИМпST после ЧКВ остается актуальной задачей кардиологической практики ввиду ее высокой распространенности и возрастающего риска госпитальной летальности. В нашем исследовании "новая $\Phi\Pi$ " фиксировалась у 7,8% больных, а госпитальная летальность в этой группе была

почти в 3 раза выше, чем среди больных без нарушений сердечного ритма. Сравнительный анализ ЭКГ, ЭхоКГ, гематологических и клинических показателей демонстрировал, что наиболее высоким предиктивным потенциалом обладают NER >48,7 усл.ед. (ОШ 7,1), класс ОСН по Killip >2 (ОШ 4,44), СОЭ >36 мм/ч (ОШ 4) и SIRI >5 усл.ед. (ОШ 3,8). Лучшая прогностическая модель "новой" ФП после ЧКВ (AUC=0,806) имела

в своей структуре 9 предикторов: NER >48,7 усл.ед., SIRI >5 усл.ед., COЭ >36 мм/ч, PQ >200 мс, 600 мс< RR >1200 мс, СДЛА >33,5 мм рт.ст., возраст >66 лет, ТІМІ <3 и класс ОСН Т. Killip >2.

Отношения и деятельность. Исследование выполнено при финансовой поддержке гранта РНФ 25-21-00165

Литература/References

- Karataş MB, Çanga Y, İpek G, et al. Association of admission serum laboratory parameters with new-onset atrial fibrillation after a primary percutaneous coronary intervention. Coronary Artery Disease. 2016;27:128-34. doi:10.1097/MCA.00000000000000333.
- Obayashi Y, Shiomi H, Morimoto T, et al. Newly Diagnosed Atrial Fibrillation in Acute Myocardial Infarction. Journal of the American Heart Association. 2021;10:e021417. doi:10.1161/JAHA.121.021417.
- Zykov MV, Barbarash OL. Pathogenesis and clinical significance of atrial fibrillation in myocardial infarction. Russian Journal of Cardiology. 2021;26(2):4307. (In Russ.) Зыков М. В., Барбараш О. Л. Патогенетические и клинические аспекты фибрилляции предсердий при инфаркте миокарда. Российский кардиологический журнал. 2021;26(2):4307. doi:10.15829/1560-4071-2021-4307.
- Maksakova AYu, Kim SA, Ashurova MA, et al. Identification of atrial fibrillation predictors on an electrocardiogram using a neural network. Russian Journal of Cardiology. 2024;29(11S): 5907. (In Russ.) Максакова А.Ю., Ким С.А., Ашурова М.А. и др. Выявление предикторов развития фибрилляции предсердий на электрокардиограмме с помощью нейросети. Российский кардиологический журнал. 2024;29(11S):5907. doi:10.15829/ 1560-4071-2024-5907.
- Kotlyarov SN, Lyubavin AV. Neural network-based prediction of incident atrial fibrillation using the trans-thoracic echocardiography parameters: a prospective study. Almanac of Clinical Medicine. 2024;52(8):417-425. (In Russ.) Котляров С. Н., Любавин А. В. Эффективность прогнозирования развития фибрилляции предсердий на основании показателей трансторакальной эхокардиографии, анализируемых нейронной сетью: проспективное исследование. Альманах клинической медицины. 2024;52(8):417-425. doi:10.18786/2072-0505-2024-52-041.
- 6. Pak RL, Geltser BI, Shakheldyan KI, et al. Complete blood count parameters as prognostic factor of new-onset atrial fibrillation in patients with ST-segment elevation myocardial infarction after percutaneous coronary intervention. The Bulletin of Contemporary Clinical Medicine. 2025;18(1):48-56. (In Russ.) Пак Р.Л., Гельцер Б. И., Шахгельдян К.И. и др. Показатели клинического анализа крови в прогнозировании фибрилляции предсердий у больных инфарктом миокарда с подъемом сегмента ST после чрескожного коронарного вмешательства. Вестник современной клинической медицины. 2025;18(1):48-56. doi:10.20969/VSKM.2025.18(1).48-56.
- Goit LN, Yang Sh. Slow Blood Flow after Percutaneous Coronary Intervention in Patients with ST-Segment Elevation Myocardial Infarction, Unstable Angina and Coronary Total Occlusion. Global Journal of Life Sciences. 2021;2(1):37. doi:10.46633/qils.020105.
- Al-Obaidi F, Al-Kinani T, M. Al-Ali H, Al-Myahi MH. New-onset atrial fibrillation in the post-primary PCI setting: a systematic review. Acta Medica Bulgarica. 2019;46(2):62. doi:10.2478/amb-2019-0021.
- Shishkina EA, Khlynova OA, Lebedeva YuL, et al. Atrial Fibrillation and Myocardial Infarction: Clinical and Pathogenic Correlations and Impact for the Prognosis. Doctor. Ru. 2023;22(8):23-8. (In Russ.) Шишкина E.A., Хлынова О.В., Лебедева Ю.И. и др.

- Фибрилляция предсердий и инфаркт миокарда: клинико-патогенетические взаимосвязи и влияние на прогноз. Доктор.Ру. 2023;22(8):23-8. doi:10.31550/1727-2378-2023-22-8-23-28.
- 10. Pak RL, Geltser BI, Shakhgeldyan KI, et al. Efficiency of prognostic scores in predicting the new-onset atrial fibrillation in patients with ST-elevation myocardial infarction after percutaneous coronary intervention. Russian Journal of Cardiology. 2024;29(12):6125. (In Russ.) Пак Р.Л., Гельцер Б.И., Шахгельдян К.И. и др. Эффективность прогностических шкал в оценке риска впервые возникшей фибрилляции предсердий у больных инфарктом миокарда с подъемом сегмента ST после чрескожного коронарного вмешательства. Российский кардиологический журнал. 2024;29(12):6125. doi:10.15829/1560-4071-2024-6125. EDN: ZDFYDZ.
- 11. Khubulava GG, Kozlov KL, Shishkevich AN, et al. Predictors of myocardial reperfusion syndrome: a modern view of the issue and current problems. Part 1: Reperfusion arrhythmias, injury and stunning myocardium (review of literature). Regional blood circulation and microcirculation. 2021;20(2):20-6. (In Russ.) Хубулава Г.Г., Козлов К.Л., Шишкевич А.Н. и др. Предикторы реперфузионного синдрома миокарда: современный взгляд на вопрос и актуальные проблемы. Часть 1: Реперфузионные аритмии, необратимое повреждение и оглушение миокарда (обзор литературы). Регионарное кровообращение и микроциркуляция. 2021;20(2):20-6. doi:10.24884/1682-6655-2021-20-2-20-26.
- Mazzone A, Scalese M, Paradossi U, et al. Development and validation of a risk stratification score for new-onset atrial fibrillation in STEMI patients undergoing primary percutaneous coronary intervention. Int J Clin Pract. 2018;e13087. doi:10.1111/jicp.13087.
- 13. Shakheldyan KI, Kuksin NS, Domzhalov IG, et al. Performance of the Models Predicting In-Hospital Mortality in Patients with ST-Segment Elevation Myocardial Infarction with Predictors in Categorical and Continuous Forms. Sovremennye tehnologii v medicine. 2024;16(1):15. (In Russ.) Шахгельдян К.И., Куксин Н.С., Домжалов И.Г. и др. Анализ эффективности прогностических моделей внутригоспитальной летальности у больных инфарктом миокарда с подъемом сегмента ST на основе предикторов в категориальной и непрерывной формах. Современные технологии в медицине. 2024;16(1):15. doi:10.17691/stm2024.16.1.02.
- Wang J, Hu S, Liang C, Ling Y. The association between systemic inflammatory response index and new-onset atrial fibrillation in patients with ST-elevated myocardial infarction treated with percutaneous coronary intervention. BMC Cardiovascular Disorders. 2022;22(1):525. doi:10.1186/s12872-022-02989-9.
- Oleynikov VE, Chernova AA, Averyanova EV, et al. Pathogenesis and clinical significance of reperfusion arrhythmias in acute myocardial infarction. Russian Journal of Cardiology. 2024;29(3S):5958. (In Russ.) Олейников В.Э., Чернова А.А., Кулюцин А.В. и др. Патогенез и клиническое значение реперфузионных аритмий при остром инфаркте миокарда. Российский кардиологический журнал. 2024;29(3S):5958. doi:10.15829/1560-4071-2024-5958.