Ассоциации генетических вариантов генов ангиотензиногена и рецептора I ангиотензина II с биомаркерами углеводного и липидного обмена при сахарном диабете 2 типа и артериальной гипертензии у жителей Дагестана

Саидов М. З.¹, Маммаев С. Н.¹, Магадова Г. М.¹, Баламирзоева Р. М.², Магомедова З. Ш.¹, Магомедова З. С.¹, Гамзаева А. У.¹

Цель. Изучение ассоциаций генетических вариантов rs4762(C521T) и rs699(T704C) гена ангиотензиногена (*AGT*), генетического варианта rs5186(A1166C) гена рецептора I ангиотензина II (*AGTR1*) с сывороточными уровнями инсулина, глюкагона, С-пептида, лептина, а также с дислипидемией и показателями гликемии при сахарном диабете 2 типа (СД2), СД2 в сочетании с артериальной гипертензией (АГ) и изолированной АГ у жителей Дагестана. **Материал и методы.** Обследовано 126 больных: 16 с СД2, 59 с СД2 в сочетании с АГ и 51 больной АГ, все жители Дагестана, у которых были исследованы генетические варианты генов *АGT* и *AGTR1*. Уровни инсулина, глюкагона, С-пептида, лептина исследовали методом иммуноферментного анализа, липидный и углеводный баланс — биохимическими методами.

Результаты. У больных СД2 определена ассоциация СС-генотипа генетического варианта rs4762(C521T) гена *AGT* со снижением уровня лептина, а СТ-генотип того же генетического варианта ассоциирован с увеличением уровня триглицеридов в сыворотке крови. ТС-генотип генетического варианта rs699(T704C) гена *AGT* ассоциирован с увеличением уровня лептина, триглицеридов и глюкозы. Генотип AA генетического варианта rs5186(A1166C) гена *AGTR1* ассоциирован с увеличением уровня лептина. При СД2 в сочетании с AГ тестировалась ассоциация СС- и СТ-генотипов генетического варианта rs4762(C521T) гена *AGT* со снижением уровня глюкагона. Генотип ТТ генетического варианта rs699(T704C) гена *AGT* ассоциирован с увеличением уровня инсулина, триглицеридов, глюкозы и индексом массы тела (ИМТ). При изолированной АГ генотипы СС и СТ генетического варианта rs4762(C521T) гена *AGT* ассоциированы со снижением уровня глюкагона. Генотип ТТ генетического варианта rs699(T704C) гена *AGT* ассоциирован с увеличением уровней инсулина, липопротеинов низкой плотности и ИМТ.

Заключение. Ассоциации генетических вариантов rs4762(C521T) и rs699(T704C) гена AGT и rs5186(A1166C) гена AGTR1 с изменениями обмена углеводов и липидов при СД2 и АГ являются важным патогенетическим звеном СД2 и АГ и персонифицированного прогноза развития этих заболеваний у жителей Лагестана.

Ключевые слова: сахарный диабет, артериальная гипертензия, генетические варианты, ренин-ангиотензин-альдостероновая система, инсулин, глюкагон, С-пептид, лептин.

Отношения и деятельность: нет.

¹ФГБОУ ВО Дагестанский государственный медицинский университет Минздрава России, Махачкала; ²Республиканский медико-генетический центр Минздрава Республики Дагестан, Махачкала, Россия.

Саидов М. 3.* — д.м.н., профессор, зав. кафедрой патологической физиологии, ORCID: 0000-0001-6246-4482, Маммаев С. Н. — д.м.н., профессор, зав. кафедрой госпитальной терапии, ORCID: 0000-0001-8898-8831, Магадова Г. М. — врач-эндокринолог, аспирант кафедры госпитальной терапии, ORCID: 0000-0002-9925-4793, Баламирзоева Р. М. — к.б.н., н.с. ПЦР лаборатории, ORCID: 0000-0003-0017-9648, Магомедова З. Ш. — к.м.н., доцент, зав. кафедрой фармакологии, ORCID: 0000-0002-9860-9820, Магомедова З. С. — к.м.н., доцент кафедры патологической физиологии, ORCID: 0000-0003-4547-1642, Гамзаева А. У. — к.м.н., доцент кафедры патологической физиологии, ORCID: 0000-0003-0958-2644.

*Автор, ответственный за переписку (Corresponding author): marat.saidov.55@mail.ru

АГ — артериальная гипертензия, АД — артериальное давление, АПФ — ангиотензинпревращающий фермент, ИМТ — индекс массы тела, ИР — инсулинорезистентность, ИФА — иммуноферментный анализ, ЛВП — липопротеиды высокой плотности, ЛНП — липопротеиды низкой плотности, ЛР — лептинорезистентность, МС — метаболический синдром, РААС — ренин-ангиотензинальдостероновая система, СД2 — сахарный диабет 2 типа, ТГ — триглицериды, ФР — фактор риска, AGT — ген ангиотензиногена, AGTR1 — ген рецептора I ангиотензина II, AT II — ангиотензин II, HbA_{1c} — гликированный гемоглобин.

Рукопись получена 13.06.2021 Рецензия получена 16.07.2021 Принята к публикации 17.07.2021

Для цитирования: Саидов М. З., Маммаев С. Н., Магадова Г. М., Баламирзоева Р. М., Магомедова З. Ш., Магомедова З. С., Гамзаева А. У. Ассоциации полиморфизмов генов ангиотензиногена и рецептора I ангиотензина II с биомаркёрами углеводного и липидного обмена при сахарном диабете 2 типа и артериальной гипертензии у жителей Дагестана. Российский кардиологический журнал. 2021;26(10):4549. doi:10.15829/1560-4071-2021-4549

Association of angiotensinogen and angiotensin II receptor type I polymorphisms with biomarkers of carbohydrate and lipid metabolism in Dagestan residents with type 2 diabetes and hypertension

Saidov M. Z.1, Mammaev S. N.1, Magadova G. M.1, Balamirzoeva R. M.2, Magomedova Z. Sh.1, Magomedova Z. S.1, Gamzaeva A. U.1

Aim. To study the associations of angiotensinogen (AGT) (s4762(C521T), rs699(T704C)) and angiotensin II receptor type I (AGTR1) (rs5186(A1166C)) genetic polymorphisms with serum levels of insulin, glucagon, C-peptide, leptin, as well as with dyslipidemia and glycemic levels in Dagestan residents with combination of type 2 diabetes (T2D) and hypertension (HTN), as well as with isolated T2D/HTN.

Material and methods. We examined 16 patients with isolated T2D, 59 patients with T2D+HTN and 51 patients with isolated HTN from Dagestan. Genetic polymorphisms of the *AGT* and *AGTR1* genes were studied. The levels of insulin, glucagon, C-peptide, and leptin were studied by enzyme-linked immunosorbent assay (ELISA), while lipid and carbohydrate metabolism — by biochemical methods.

Results. In patients with T2D, the association of CC genotype of *AGT* gene rs4762(C521T) polymorphism with a leptin decrease was determined, while its CT genotype was associated with an increase in serum level of triglycerides. The TC genotype of *AGT* gene rs699(T704C) polymorphism was associated with an increase in leptin, triglyceride and glucose levels. The AA genotype of *AGTR1* gene rs5186(A1166C) polymorphism was associated with an increase in insulin and glucose levels, as well as a decrease in leptin level. In patients with a combination of T2D and HTN, CC and CT genotypes of *AGT* gene rs4762(C521T) polymorphism was associated with a decrease in glucagon level. The TT genotype of *AGT* gene rs699(T704C) polymorphism was associated with an increase in insulin, triglyceride, glucose and body mass index (BMI) levels. In isolated HTN, the CC and CT genotypes of *AGT* gene rs4762(C521T) polymorphism were associated

with a decrease in glucagon level. The TT genotype of *AGT* gene rs699(T704C) polymorphism was associated with increased levels of insulin, low density lipoproteins, and BMI.

Conclusion. Associations of *AGT* (s4762(C521T), rs699(T704C)) and *AGTR1* (rs5186(A1166C)) genetic polymorphisms with carbohydrate and lipid metabolism changes are an important pathogenetic link of T2D and HTN, which allows developing an individual prognosis of these diseases in Dagestan residents.

Keywords: diabetes, hypertension, genetic options, renin-angiotensin-aldosterone system, insulin, glucagon, C peptide, leptin.

Relationships and Activities: none.

¹Dagestan State Medical University, Makhachkala; ²Republican Medical Genetics Center, Makhachkala, Russia.

Сахарный диабет 2 типа (СД2) относится к группе метаболических (обменных) заболеваний, при которых множество патогенетически обоснованных причинно-следственных взаимосвязей продолжают оставаться предметом дальнейших исследований. Именно это обстоятельство позволило отнести СД2 к группе многофакторных заболеваний с необходимостью стратификации всех известных факторов риска (ФР). Сочетание СД2 с артериальной гипертензией (АГ), заболеваниями почек, сосудов, ожирением, дислипидемией, генетическими факторами и другими существенно осложняет интерпретацию патогенеза СД2, а также персонификацию схем лечения.

Коморбидность СД2 и АГ достаточно распространена. По данным авторов [1], среди первично госпитализированных пациентов в эндокринологический стационар в 98% случаев встречалась АГ и в 59% случаев — ишемическая болезнь сердца. По другим данным, частота АГ у больных СД2 составляет от 60 до 80% в нашей стране, а в странах Европы этот показатель составляет 30-60%. У 50% больных СД2 дебют заболевания связан с повышением артериального давления (АД), а изменения углеводного обмена наступают позже [2]. На основании анализа 25451 истории болезни (г. Новосибирск) показано, что рост частоты встречаемости всех случаев АГ связан с повышением частоты случаев АГ в сочетании с ожирением и СД2. На этом фоне средняя частота встречаемости СД2 в сочетании с АГ и ожирением за период с 2003г по 2011г повысилась у женщин в 2,23 раза, а у мужчин — в 2 раза. Авторы подчеркивают, что ожирение является ведущим фактором в увеличении числа всех случаев сочетания СД2 и АГ [3].

Сочетание СД2 и АГ обусловлено общностью некоторых патофизиологических механизмов и ФР, ускоряющих сосудистое поражение органов-мишеней — почек, сердца, сетчатки, мозга, а также магистральных (кровеносных) сосудов. В основе коморбидности СД2 и АГ лежит снижение чувстви-

Saidov M. Z.* ORCID: 0000-0001-6246-4482, Mammaev S. N. ORCID: 0000-0001-8898-8831, Magadova G. M. ORCID: 0000-0002-9925-4793, Balamirzoeva R. M. ORCID: 0000-0003-0017-9648, Magomedova Z. Sh. ORCID: 0000-0002-9860-9820, Magomedova Z. S. ORCID: 0000-0003-4547-1642, Gamzaeva A. U. ORCID: 0000-0003-0958-2644.

*Corresponding author: marat.saidov.55@mail.ru

Received: 13.06.2021 Revision Received: 16.07.2021 Accepted: 17.07.2021

For citation: Saidov M.Z., Mammaev S.N., Magadova G.M., Balamirzoeva R.M., Magomedova Z.Sh., Magomedova Z.S., Gamzaeva A.U. Association of angiotensinogen and angiotensin II receptor type I polymorphisms with biomarkers of carbohydrate and lipid metabolism in Dagestan residents with type 2 diabetes and hypertension. *Russian Journal of Cardiology*. 2021;26(10):4549. doi:10.15829/1560-4071-2021-4549

тельности периферических тканей к инсулину — инсулинорезистентность (ИР), являющаяся также патогенетической основой метаболического синдрома (МС). К важнейшим ассоциированным ФР МС, входящим в диагностические критерии МС, относят СД2, АГ и ожирение. Течение этих заболеваний сопровождается активацией ренин-ангиотензин-альдостероновой системы (РААС). Этот факт позволяет отнести гиперпродукцию ангиотензина II (AT II) к одному из существенных факторов коморбидности СД2 и АГ. Множество работ подтверждают подобную точку зрения. Так, активацию РААС и повышение уровня AT II относят к ведущему патофизиологическому механизму повышения АД при СД2 и прогрессированию диабетической болезни почек [4]. Восьмилетнее наблюдение за больными СД2 показало, что развитие ИР сопряжено с активацией РААС и синхронным увеличением сывороточного уровня альдостерона, ренина и AT II [5]. Взаимосвязь между РААС и ИР подчеркивают также данные, в соответствии с которыми увеличение активности AT II в скелетных мышцах, жировой ткани и в поджелудочной железе патогенетически связано с развитием ИР. Применение ингибиторов РААС увеличивает чувствительность к инсулину по сравнению с другими антигипертензивными средствами [6]. Весьма демонстративны данные, подчеркивающие, что на содержание глюкагоноподобного пептида-1 (GLP-1) интегрирующее и координирующее влияние оказывает РААС. Продукт активации РААС — AT II — усиливает экспрессию $\beta(3)$ -адренергического рецептора и продукцию норадреналина в бурой жировой ткани, что влияет на вес тела в сторону снижения и уменьшения потребления пищи. Авторы приводят факты уменьшения ИР и улучшения течения СД2 при применении ингибиторов ангиотензинпревращающего фермента (АП Φ) и блокаторов рецепторов АТ II [7]. На основании анализа уровня систолического АД и альбуминурии на модели регрессии Кокса показано, что пациенты с СД2 в сочетании с АГ с низким ответом на лечение ингибиторами АПФ (10% больных) имеют более высокий риск развития кардиоваскулярных осложнений, в то время как в группе больных СД2 в сочетании с АГ с хорошим ответом на лечение ингибиторами АПФ риск сердечно-сосудистых осложнений в 51% случаев был статистически значимо ниже по сравнению с группой пациентов СД2 в сочетании с АГ и низким ответом на лечение ингибиторами АПФ [8].

Интересны данные о прямой корреляции между сывороточными уровнями ренина и гликированного гемоглобина (HbA_{lc}), а также креатинина и альдостерона у больных СД2 в сочетании с АГ [9]. Влиянию РААС подвержены и ключевые гормональные регуляторы уровня глюкозы в крови с разнонаправленными функциональными свойствами — инсулин и глюкагон [10].

Жировая ткань, относимая к эндокринным органам и продуцирующая адипокины, включает в себя и РААС. ИР и нарушения липидного обмена ассоциированы с активацией АПФ в жировой ткани и усилением продукции АТ 1-7 (7 вариантов ангиотензинов) [11]. Активность РААС повышена у пациентов с абдоминальным ожирением. 80-90% больных СД2 имеют избыточную массу тела, при этом ожирение I степени увеличивает риск развития СД2 в 2 раза, ожирение II степени — в 5 раз и ожирение III степени — в 10 раз. При этом у большинства больных определяется и АГ [12].

Одним из ключевых регуляторов массы тела и пищевого поведения является лептин и его рецепторы. Изменения активности этого гормона, продуцируемого жировой тканью, рассматриваются в качестве одного из патогенетических звеньев СД2, МС и ожирения. Повышение сывороточного уровня лептина, снижение чувствительности тканей к лептину — лептинорезистентность (ЛР), ассоциировано с развитием ожирения, ИР, дислипидемии и др. [13]. ЛР является патогенетическим звеном МС, СД2 и ожирения. ЛР часто сочетается с ИР, поскольку увеличение уровня лептина в сыворотке крови приводит к блокированию инсулинового сигнала в клетках инсулинзависимых тканей [14]. При метаболическом синдроме ЛР прямо коррелирует с индексом НОМА-IR, ИР и уровнем HbA_{1c} [15].

Известно, что стратификация ФР СД2, АГ и ожирения вывела в число наиболее значимых генетическую составляющую. Наиболее демонстративно это патогенетическое звено представлено в отношении функциональной активности РААС, продуктов активации РААС, а также спектра гормонов и гормоноподобных веществ. Показано, в частности, что в кавказской популяции точечные мутации rs2493134 и rs699 гена ангиотензиногена (AGT) статистически значимо ассоциированы с уровнем сывороточного ангиотензиногена и чувствительностью к инсу-

лину [16]. На китайской популяции показано, что I/D-полиморфизм гена АПФ (*ACE*) ассоциирован с такими ФР СД2, как семейный анамнез, ожирение, индекс массы тела (ИМТ), АГ и др. [17]. В азиатской популяции определены ассоциации I/D-полиморфизма гена *ACE* и полиморфизма A1166C гена рецептора I АТ II (*AGTR1*) с развитием диабетической нефропатии [18]. С учетом клинической и прогностической значимости полиморфных вариантов генов РААС (гены *ACE*, *AGT* и *AGTR1*) при СД2 и АГ, результаты тестирования полиморфизмов этих генов используются в качестве независимых генетических предикторов возникновения и развития СД2 и АГ [19].

Таким образом, представленные данные литературы свидетельствуют о многообразии патогенетических механизмов сочетания СД2, АГ и ожирения, и генетическая составляющая является одной из ведущих.

В предыдущей работе [20] мы показали, что у жителей Дагестана при сочетании СД2 и АГ генотип СТ генетического варианта rs4762(C521T) гена AGT, а также генотип TC генетического варианта rs699(T704C) гена AGT ассоциированы с меньшей вероятностью развития СД2 в сочетании с АГ. У носителей генотипа СС генетического варианта rs699(T704C) гена AGT вероятность развития СД2 в сочетании с АГ повышается, а у больных с изолированной АГ генотип АА генетического варианта rs5186(A1166C) гена AGTR1 ассоциирован со снижением вероятности развития АГ. Очевидно, что представляло интерес изучить ассоциации указанных и других генетических вариантов генов AGT и AGTR1 системы РААС с биомаркерами углеводного и липидного обмена при СД2 и АГ на этом же контингенте больных.

Целью настоящего исследования явилось изучение ассоциаций генетических вариантов rs4762(C521T) и rs699(T704C) гена ангиотензиногена (*AGT*), генетического варианта rs5186(A1166C) гена рецептора I AT II (*AGTR1*) с сывороточными уровнями инсулина, глюкагона, С-пептида, лептина, а также с дислипидемией и показателями гликемии при СД2, СД2 в сочетании с АГ и изолированной АГ у жителей Дагестана.

Материал и методы

Работа относится к обсервационным многоцентровым одномоментным выборочным контролируемым нерандомизированным исследованиям. Набор пациентов осуществлялся в медицинских учреждениях г. Махачкалы (см. ниже). Протокол исследования включал подписание информированного согласия, заполнение карт амбулаторных больных с клиническими диагнозами СД2, АГ и сочетания СД2 с АГ, куда вносились анамнестические данные,

данные лабораторно-инструментальных методов обследования, результаты генетических исследований полиморфизмов генов AGT и AGTR1, а также уровни инсулина, глюкагона, С-пептида, лептина, липидного спектра, глюкозы, HbA_{1c} в сыворотке крови.

В исследование включались 3 группы больных, а также контрольная группа.

1 группа больных — с установленным диагнозом СД2. 2 группа больных — с установленным диагнозом "эссенциальная АГ (гипертоническая болезнь)" при стойком повышении АД в диапазоне 140-159/90-99 мм рт.ст. и выше. 3 группа больных — с сочетанием СД2 и АГ.

Базовая терапия больных СД2 включала в себя применение препаратов бигуанидового ряда — тиофор, глюкофаж (от 0,5 до 2 гр в сут.), производные сульфонилмочевины — диабетон МВ (от 60 до 120 мг в сут.), инкретины — форсига, джардинс (от 10 до 25 мг в сут.), липидснижающие препараты — розувастатины, симвастатины (от 10 до 20 мг в сут.). Возраст, пол, ИМТ, продолжительность заболевания не относились к критериям включения/невключения в исследование. Контрольная группа включала 47 лиц с нормальным уровнем АД и с отсутствием симптомов СД2 в возрасте 59 (56;61) лет (26 мужчин и 33 женщин). Все добровольцы, давшие информированное согласие на проведение исследования, в течение последнего месяца перед началом исследования не переносили острых инфекционных заболеваний и не имели хронической патологии воспалительного генеза.

Критерии исключения. Из 2 группы обследованных больных с диагнозом "эссенциальная АГ (гипертоническая болезнь)" исключались больные с вторичными (симптоматическими) формами АГ, а также больные с хронической сердечной недостаточностью, инфарктом миокарда, инсультом, с патологией других органов и систем, не связанных с СД2 и эссенциальной АГ, которые могли бы повлиять на результаты исследования.

В работу были включены больные с диагнозами СД2, АГ и СД2 в сочетании с АГ, находившиеся на обследовании и лечении в эндокринологическом отделении Республиканской клинической больницы, на амбулаторном учете в Республиканском эндокринологическом центре Республики Дагестан, а также на лечении в Республиканском медицинском центре Республики Дагестан.

Всем пациентам проводился однократный забор крови из периферической вены в количестве 10 мл. Выделенная сыворотка аликвотировалась и использовалась для проведения биохимических и иммунологических исследований.

Основным результатом, оценивавшимся в ходе исследования, были различия в уровнях инсулина, глюкагона, С-пептида, лептина, липидного спектра, глюкозы, HbA_{1c} в сыворотке крови больных СД2,

СД2 в сочетании с АГ и изолированной АГ — носителей полиморфизмов С521Т и Т704С гена AGT, полиморфизма A1166С гена AGTR1.

Уровни инсулина, глюкагона, С-пептида и лептина в сыворотке крови определялись с использованием наборов для твердофазного иммуноферментного анализа ($И\Phi A$).

Инсулин — на наборах ИФА Insulin ELISA Monobind компании AccuBind ELISA Microwells (США), Code 2425-300. Результат анализа фиксировался на многоканальном спектрофотометре Stat Fax 2600, AWRENESS, Technology Inc. (США) в двухволновом режиме: основной фильтр — 450 нм, референсфильтр — 630 нм. Чувствительность метода — 0,182 мкМЕ/мл.

Глюкагон — на наборах ИФА Multispecies Glucagon ELISA компании Yanaihara Institute Inc (Япония), кат. No YK090. Результат определялся на том же спектрофотометре в двухволновом режиме: основной фильтр — 490 нм, референс-фильтр — 630 нм. Диапазон измеряемых значений — 50-10000 пг/мл.

С-пептид — на наборах ИФА С-рерtid Test System компании AccuBind ELISA Microwells (США), Code 2725-300. Результат замерялся в двухволновом режиме: основной фильтр — 450 нм, референс-фильтр — 630 нм. Чувствительность метода — 0,025 нг/мл.

Лептин — на наборах ИФА компании Diagnostics Biochem Canada Inc, Code CAN-L-4260. Результат замерялся в двухволновом режиме: основной фильтр — 450 нм, референс-фильтр — 630 нм. Чувствительность метода — 0.5 нг/мл.

Показатели липидного и углеводного баланса определяли на анализаторе RANDOX IMOLATM с использованием наборов реактивов Randox Lab. Lim., на общий холестерин — REF CH 3810, на липопротеиды высокой плотности (ЛВП) — REF CH 3811, на липопротеиды низкой плотности (ЛНП) — REF CH 3841, на триглицериды (ТГ) — REF TR 3823, на глюкозу — REF Gluc-HK GL 3881, на HbA $_{1c}$ — REF HA 3830.

Исследуемые генетические варианты определялись методом Real-Time PCR. Выделение ДНК осуществлялось из цельной крови пациентов и здоровых добровольцев с помощью набора "ДНК-экспресс кровь" ("Литех", Россия) согласно инструкции производителя. Амплификацию и плавление изучаемого локуса ДНК проводили на амплификаторе АВІ 7900 НТ (Applied Biosystems, США) с флуоресцентной детекцией в режиме реального времени. Аллельспецифическую полимеразную цепную реакцию проводили на наборах для генотипирования "SNP-ЭКСПРЕСС-РВ-Кардиогенетика" "Литех", Россия.

Анализ в подгруппах. Больные (n=126) были разделены на 3 подгруппы в соответствии с клиническим диагнозом. 1 подгруппа — с СД2 (n=16), 2 подгруппа — с СД2 и АГ (n=59) и 3 подгруппа — с изолиро-

Таблица 1 Сывороточные уровни инсулина, глюкагона, С-пептида и лептина у обследованных больных

	Инсулин, мкМЕ/мл, Ме [25;75]	Глюкагон, пг/мл, Ме [25;75]	С-пептид, нг/мл, Ме [25;75]	Лептин, нг/мл, Ме [25;75]
СД2, n=16	7,5 [4;12,7]	1660 [900;3200]	0,35 [0,08;1,1]*	10,4 [8,17;19,4]
СД2 и АГ, n=59	11 [8;17,5]*	860 [470;1625]*	1 [0,9;21]	20 [15,8;42,5]
AΓ, n=51	11 [9;16,5]**	800 [500;2000]*	1,27 [0,5;1,9]	31,5 [15,8;43]
Контроль, n=45	8,9 [7;11,5]	5250 [762;7750]	1,05 [0,2;1,35]	21,2 [6,12;29,5]

Примечание: * — p<0,05; ** — p<0,01 при сравнении с контрольной группой (Т-критерий Манна-Уитни).

Сокращения: АГ — артериальная гипертензия, СД2 — сахарный диабет 2 типа.

Таблица 2 Сывороточные уровни инсулина, глюкагона, С-пептида и лептина у носителей генетического варианта rs4762(C521T) гена *AGT*

Генотипы генетического варианта rs4762(C521T)	Инсулин, мкМЕ/мл, Ме [25;75]	Глюкагон, пг/мл, Ме [25;75]	С-пептид, нг/мл, Ме [25;75]	Лептин, нг/мл, Ме [25;75]
СД2				
CC, n=6	12,7 [11,3;15,7]	900 [680;2000]	1,1 [0,35;1,8]	10,3 [9,4;10,5]*
CT, n=8	4,7 [3,6;8,6]*	1930 [1190;4800]	0,15 [0,07;0,66]	15,5 [7;20,2]
TT, n=0	-	-	-	-
СД2 и АГ				
CC, n=41	10 [7,5;17,5]	740 [450;1775]*	1,14 [0,85;2,1]	27 [17,3;47]
CT, n=13	11,3 [9,5;17]	1400 [1050;4100]*	1 [0,7;1,6]*	32,2 [19,3;46]
TT, n=3	-	-	-	-
АГ				
CC, n=31	12 [9,8;17,5]	750 [487;1800]*	1,36 [0,8;2,3]	32 [25;40]
CT, n=15	10,3 [9,2;12,9]	820 [500;2850]*	1 [0,14;1,3]*	42 [28;45]
TT, n=2	-	-	-	-
Контроль				
CC, n=26	9,9 [7,5;11,7]	4225 [700;7650]	1,1 [0,57;1,7]	37 [6,5;43]
CT, n=17	8,9 [7;12]	5400 [4200;6600]	0,33 [0,19;0,615]	28,5 [22;35]
TT, n=1	-	-	-	-

Примечание: * — p<0,05 при сравнении с такими же генотипами контрольной группы (Т-критерий Манна-Уитни).

Сокращения: АГ — артериальная гипертензия, СД2 — сахарный диабет 2 типа.

ванной АГ (n=51). В каждой из указанных подгрупп были выделены больные — носители генетических вариантов rs4762 (C521T) и rs699 (T704C) гена AGT, а также генетического варианта rs5186(A1166C) гена AGTR1, у которых были определены сывороточные уровни инсулина, глюкагона, С-пептида, лептина, липидного спектра, глюкозы и HbA_{lc} . Контрольная группа включала 47 лиц той же возрастной группы, в которой также была выделена подгруппа лиц — носителей тех же генетических вариантов, что и в опытных подгруппах.

Этическая экспертиза. Протокол исследования был одобрен Комитетом по этике при Дагестанском государственном медицинском университете, протокол № 9 от 34.10.2016. Все пациенты до включения в исследование подписали информированное согласие.

Статистический анализ. Размер выборки предварительно не рассчитывался, поскольку исследование носило популяционный характер и предполагало включение в анализ всех случаев СД2, СД2 в сочетании с $A\Gamma$ и изолированной $A\Gamma$. Обработку данных

проводили с помощью статистического пакета Statistica (версия 6,0), а также Biostat 4.03. База данных создавалась с использованием редактора электронных таблиц Microsoft Excel 2007. Непрерывные переменные в исследуемых выборках представлены в виде медианы (Ме) с 25;75-процентилями. Статистическую значимость различий между двумя сравниваемыми выборками (опыт-контроль) определяли с помощью Т-критерия Манна-Уитни. Критический уровень значимости различий выбирали равным 5% (p<0,05).

Результаты

В исследование включены 16 больных СД2 в возрасте 58 (52;61) лет с длительностью заболевания 6,5 (5,2;9,5) года, 59 больных СД2 в сочетании с АГ в возрасте 61 (57;63) года с длительностью заболевания 12 (8,2;18) лет и 51 больной с АГ в возрасте 60 (54;61) лет с длительностью заболевания 10 (7,2;15) лет. Контрольная группа включала 47 лиц в возрасте 59 (56;61) лет. В соответствии с результатами на-

Таблица 3

Ассоциации генетического варианта rs4762(C521T) гена *AGT* с дислипидемией и показателями гликемии

Генотипы генетического варианта rs4762(C521T)	Холестерин общий, ммоль/л	ЛНП, ммоль/л	ЛВП, ммоль/л	ТГ, ммоль/л	Глюкоза, ммоль/л	HbA _{1c} , %	ИМТ, кг/м ²
СД2							
CC, n=6	5,2 (4,5;6)	3,8 (2,9;5)	1,2 (1;1,2)	1,6 (1,4;1,7)	9,5 (8,8;11)	8,2 (8;9)	30 (25;33)
CT, n=8	5,5 (4,6;5,8)	4,3 (3;5)	1,2 (1;1,3)	3,1 (2,4;3,1)*	14,4 (10;17)	9 (8,4;9)	26 (25;27)
TT, n=0	-		-	-	-	-	-
СД2 и АГ							
CC, n=41	5,6 (4,8;6)	3,2 (2,7;4)	1 (0,9;1,4)	1,8 (1,4;2,4)	9,5 (8;13,6)	9,5 (8;11)	31 (28;36)
CT, n=13	6,4 (6;6,7)*	4,1 (2;5)	1 (0,9;1,5)	1,6 (1,4;2,5)	11 (9;14)	9,3 (7;11)	32 (29;34)
TT, n=3	-	-	-	-	-	-	-
АГ							
CC, n=31	5,7 (5,2;7)	3,3 (2,9;4)	1,3 (1,1;8)	1,5 (1;2)	5,5 (5,2;6)	-	30 (26;32)
CT, n=15	5,6 (4,9;6)	3,2 (2,7;5)	1,7 (1;2)	1,5 (1;3)	5 (5,5;4)	-	29 (28;32)
TT, n=2	-	-	-	-	-	-	-
Контроль							
CC, n=26	5,5 (5;6,5)	3 (2;3,8)	1,3 (1;1,8)	1,3 (1;2)	5,3 (4,9;5,6)	-	28 (25;30)
CT, n=17	5,5 (5;6,4)	4 (3;4,3)	1,5 (1;1,7)	1 (0,8;3)	5,4 (5;5,8)	-	26 (24;27)
TT, n=1	-	-	-	-	-	-	-

Примечание: * — p<0,05 при сравнении с такими же генотипами контрольной группы (Т-критерий Манна-Уитни).

Сокращения: АГ — артериальная гипертензия, ИМТ — индекс массы тела, ЛВП — липопротеиды высокой плотности, ЛНП — липопротеиды низкой плотности, СД2 — сахарный диабет 2 типа, ТГ — триглицериды, НbA_{1c} — гликированный гемоглобин.

ших исследований [20] в указанных подгруппах и в контрольной группе были выделены лица — носители генетических вариантов rs4762(C521T) и rs699(T704C) гена AGT, а также генетического варианта rs5186(A1166C) гена AGTR1. В этих подгруппах были определены уровни инсулина, глюкагона, С-пептида, лептина, липидного спектра, глюкозы и HbA_{1c} в сыворотке крови.

Результаты определения уровней инсулина, глюкагона, С-пептида и лептина у больных СД2, СД2 и АГ и изолированной АГ представлены в таблице 1.

Видно, что уровень инсулина в подгруппах больных СД2, СД2 в сочетании с АГ и изолированной АГ был выше по сравнению с контролем (p<0,05, p<0,01), а уровень глюкагона у этих же больных, напротив, был понижен (p<0,05). Уровень С-пептида был снижен (p<0,05) только в общей подгруппе больных СД2. Можно отметить, что в этой же подгруппе больных видна тенденция к снижению и уровня инсулина. Что же касается лептина, то колебания уровня этого гормона носили статистически незначимый характер.

Результаты изучения уровней инсулина, глюкагона, С-пептида и лептина в сыворотке крови у носителей полиморфизма rs4762(C521T) гена *AGT* представлены в таблице 2.

Согласно полученным результатам, при СД2 статистически значимые изменения касались единственного случая — снижения уровня лептина у носителей генотипа СС генетического варианта

гѕ4762(С521Т) гена AGT по сравнению с таким же генотипом контрольной группы (р<0,05). При СД2 в сочетании с АГ у носителей генотипов СС и СТ указанного генетического варианта отмечалось снижение уровня глюкагона, а у носителей генотипа СТ, напротив — увеличение уровня С-пептида в сыворотке крови (р<0,05). Как следует из данных таблицы 2, аналогичные изменения определяются и в отношении изолированной АГ, что является крайне интересным фактом.

Показатели биомаркеров углеводного и липидного обмена, а также ИМТ у этих же больных, носителей генетического варианта rs4762(C521T) гена *AGT*, представлены в таблице 3.

Отличительной особенностью представленных данных является то, что статистически значимые изменения касались только генотипа СТ генетического варианта rs4762(C521T) гена AGT. При СД2 у носителей этого генотипа определяется увеличение уровня ТГ в сыворотке крови, а при СД2 в сочетании с АГ тестируется увеличение сывороточного уровня общего холестерина по сравнению с контролем (p<0,05). Во всех остальных случаях колебания сывороточных уровней биомаркеров углеводного и липидного обмена, а также ИМТ носили статистически незначимый характер. Заметим, что различия в уровнях ТГ и общего холестерина определялись и при сравнении этих показателей у носителей генотипов СС и СТ между собой внутри одной подгруппы больных. Так, при СД2 уровень ТГ был выше у носителей генотипа СТ

Таблица 4

Сывороточные уровни инсулина, глюкагона, С-пептида и лептина у носителей генетического варианта rs699(T704C) гена *AGT*

Генотипы генетического варианта rs699(T704C)	Инсулин, мкМЕ/мл, Ме [25;75]	Глюкагон, пг/мл, Ме [25;75]	С-пептид, нг/мл, Ме [25;75]	Лептин, нг/мл, Ме [25;75]
СД2				
TT, n=1	-			-
TC, n=12	7,1 [3,9;12,7]	1440 [845;3900]	0,45 [0,13;1,2]	10,5 [7,8;20]*
CC, n=1	-	-	-	-
СД2 и АГ				
TT, n=11	12,8 [9;27]*	1500 [950;3760]	1,1 [0,5;3,9]	22 [14,7;35]
TC, n=22	11 [8,7;17]	950 [525;1000]*	1,3 [0,95;1,6]*	27,7 [19,2;41]
CC, n=24	10,5 [7,5;17,5]	800 [530;4350]	1 [0,8;2]	27 [15,6;47]
АГ				
TT, n=6	17,8 [16;19]**	1125 [787;1462]	2,4 [1,5;2,5]	35 [28,5;40,5]
TC, n=32	10 [8,8;14,2]	1300 [500;2150]*	0,9 [0,3;1,5]*	45 [27;48]
CC, n=12	11,7 [10;21,5]	700 [540;2010]	1,3 [1;1,6]	37 [15,2;46,5]
Контроль				
TT, n=7	7,9 [6,5;9,5]	7500 [3960;7650]	1,95 [1,5;2,9]	27 [16,7;42]
TC, n=27	10 [8;13]	5300 [1462;7750]	0,2 [0,1;0,7]	37 [10,2;39]
CC, n=10	7,2 [7;10,4]	6200 [1960;7880]	1,03 [0,5;3,9]	24 [16;38]

Примечание: * — p<0,05; ** — p<0,01 при сравнении с такими же генотипами контрольной группы (Т-критерий Манна-Уитни).

Сокращения: АГ — артериальная гипертензия, СД2 — сахарный диабет 2 типа.

Таблица 5 Ассоциации генетического варианта rs699(T704C) гена *AGT* с дислипидемией и показателями гликемии

Генотипы генетического варианта rs699(T704C)	Холестерин общий, ммоль/л	ЛНП, ммоль/л	ЛВП, ммоль/л	ТГ, ммоль/л	Глюкоза, ммоль/л	HbA _{1c} , %	ИМТ, кг/м ²
СД2							
TT, n=1	-	-	-	-	-	-	-
TC, n=12	5,4 (4,3;5,8)	3,5 (3;5)	1,5 (0,9;1)	2,4 (1,9;3,1)*	10,5 (10;15)*	8,9 (8;9)	26 (25;30)
CC, n=1	-		-	-	-	-	-
СД2 и АГ							
TT, n=11	6 (4,7;6,4)	3 (2,6;3,6)	1,6 (1;2)	2,1 (2;3,8)**	11 (9;13,6)*	10 (8;11)	32 (29;34)**
TC, n=22	5,5 (5;6,5)	3 (2;4)	1 (1;1,4)*	1,7 (1,3;2,4)	9,2 (8;13)*	8,4 (7;11)	34 (30;35)**
CC, n=24	5,9 (5,4;6)	3 (2,8;3,4)	1 (1;1,3)*	1,7 (1,4;2)	9,9 (8;13)*	9,3 (8;11)	29 (28;33)
АГ							
TT, n=6	5,9 (5,6;6)	3,6 (3;4,7)*	1,5 (1,3;2)	1,1 (0,8;1,7)	5,7 (5,5;6)	-	32 (30;33)**
TC, n=32	5,9 (5,5;6)	3,3 (2,7;4,3)	1,4 (1;2)	1,4 (1;2)	5,4 (5;5,6)	-	30 (28;33)**
CC, n=12	5 (4,8;6,4)	3 (2;4,7)	1,3 (1;1,8)	2,6 (1;3)**	5 (4,8;5,7)	-	29 (28;31)
Контроль							
TT, n=7	5,3 (5;6,5)	2,6 (2;3,9)	1,4 (1;1,7)	1,5 (1;2,3)	5,2 (4,9;5,6)	-	26 (25;28)
TC, n=27	5,5 (5;6,4)	3,6 (2,5;4)	1,4 (1;1,8)	1,2 (0,9;3)	5,6 (5;5,7)	-	27 (25;29)
CC, n=10	5,6 (4,6;7)	3,7 (2,7;4)	1,9 (1;1,3)	0,9 (0,7;1)	5 (4,6;5,5)	-	27 (26;31)

Примечание: *- p<0,05; **- p<0,01 при сравнении с такими же генотипами контрольной группы (Т-критерий Манна-Уитни).

Сокращения: $A\Gamma$ — артериальная гипертензия, ИМТ — индекс массы тела, ЛВП — липопротеиды высокой плотности, ЛНП — липопротеиды низкой плотности, СД2 — сахарный диабет 2 типа, ТГ — триглицериды, HbA_{1c} — гликированный гемоглобин.

по сравнению с носителями генотипа СС $(3,1\ (2,4;3,1)$ vs $1,6\ (1,4;1,7),\ p<0,05)$. Такая же картина открывается и при СД2 и АГ только в отношении общего холестерина $(6,4\ (6;6,7)\ vs\ 5,6\ (4,8;6),\ p<0,05)$.

Оценка уровней инсулина, глюкагона, С-пептида и лептина в сыворотке крови у носителей другого ге-

нетического варианта rs699(T704C) гена AGT представлена в таблице 4.

Результаты изучения данного генетического варианта более многообразны. Так, при СД2 тестируется снижение уровня сывороточного лептина у носителей генотипа ТС генетического варианта rs699(T704C)

Таблица 6

Сывороточные уровни инсулина, глюкагона, С-пептида и лептина у носителей генетического варианта rs5186(A1166C) гена *AGTR1*

Генотипы генетического варианта rs5186(A1166C)	Инсулин, мкМЕ/мл, Ме (25;75)	Глюкагон, пг/мл, Ме (25;75)	С-пептид, нг/мл, Ме (25;75)	Лептин, нг/мл, Ме (25;75)
СД2				
AA, n=9	12 (6;13,4)*	1450 (635;3900)	0,45 (0,12;1,3)	10,4 (9;18)*
AC, n=5	5,5 (3,8;7,5)**	1660 (1220;2200)	0,15 (0,08;1)	12,7 (5,6;19)
CC, n=0	-	-	-	-
СД2 и АГ				
AA, n=36	12,6 (8;18)**	1000 (410;1700)*	0,36 (0,8;2)	27,7 (18,7;46,5)
AC, n=15	10,5 (6,8;15,7)	800 (575;940)	1 (0,98;1,5)	33,5 (9,6;52,7)
CC, n=6	9,7 (9,3;16)	780 (640;4600)	0,95 (0,6;2,4)	21,3 (13,7;28,3)
АГ				
AA, n=25	11,7 (9,8;17,7)**	800 (500;1800)**	0,45 (1;2,3)	43 (22,7;53,5)
AC, n=16	11 (9,5;14,2)	820 (700;2550)	0,6 (0,1;1,3)	42 (17,5;63)
CC, n=7	12,5 (7;13,4)	450 (425;1525)	0,83 (0,7;2)	52 (43,5;60,5)
Контроль				
AA, n=29	8 (7;12)	7500 (950;7800)	0,9 (0,1;1,5)	32 (8,7;40,5)
AC, n=12	9,9 (9,2;11,5)	2660 (1010;4200)	0,7 (0,2;1,7)	28 (9;43)
CC, n=3		-	-	-

Примечание: * — p<0,05; ** — p<0,01 при сравнении с такими же генотипами контрольной группы (Т-критерий Манна-Уитни).

Сокращения: АГ — артериальная гипертензия, СД2 — сахарный диабет 2 типа.

гена AGT (p<0,05). При СД2 и АГ видим увеличение уровня инсулина у носителей генотипа ТТ, а у носителей генотипа ТС это увеличение касается уровня С-пептида (p<0,05). Уровень глюкагона снижен у носителей генотипа ТС по сравнению с контролем (p<0,05). При изолированной АГ определяется увеличение уровня инсулина у носителей генотипа ТТ (p<0,01), увеличение уровня С-пептида у носителей генотипа ТС (p<0,05) и снижение уровня глюкагона у носителей генотипа ТС (p<0,05). Показатели липидного и углеводного обменов, а также ИМТ в этих подгруппах больных представлены в таблице 5.

Видно, что при СД2 у носителей генотипа ТС определяется увеличение уровней ТГ и глюкозы в сыворотке крови (p<0,05). Увеличение ТГ, глюкозы, а также ИМТ видно у носителей генотипа ТТ при СД2 и АГ (p<0,05; p<0,01). Также при СД2 и АГ у носителей генотипа ТС изучаемого генетического варианта увеличиваются уровень глюкозы и ИМТ и снижается уровень ЛВП (p<0,05; p<0,01), а у носителей генотипа СС увеличивается уровень глюкозы и также снижается уровень ЛВП (p<0,05). При изолированной АГ у носителей генотипа ТТ тестируется увеличение ЛНП и ИМТ (p<0,05; p<0,01), при генотипе ТС — увеличение ИМТ (p<0,01), а при генотипе СС — увеличение уровня ТГ (p<0,01).

Следующий генетический вариант, который, согласно нашим исследованиям, статистически значимо ассоциирован с СД2 и АГ — это генетический вариант rs5186(A1166C) гена AGTR1. Результаты изу-

чения сывороточных уровней инсулина, глюкагона, С-пептида и лептина у носителей этого генетического варианта представлены в таблице 6.

Представленные в таблице 6 данные весьма разнообразны. Прежде всего отметим, что при СД2 у носителей генотипа AA уровень инсулина в сыворотке крови повышен по сравнению с контролем (p<0,05), а при генотипе AC, напротив, снижен (p<0,01), и этот факт заслуживает отдельного обсуждения. Также видно, что генотип AA ассоциирован со снижением уровня лептина (p<0,05).

При СД2 и АГ генотип АА ассоциирован с увеличением уровня инсулина (p<0,01) и с понижением уровня глюкагона в сыворотке крови (p<0,05). Аналогичные изменения в отношении этого генотипа определяются и при изолированной АГ.

Показатели углеводного и липидного обменов, а также ИМТ представлены в таблице 7.

При СД2 видно, что у носителей генотипа АС определяется увеличение уровня ТГ (p<0,05), а у носителей генотипов АА и АС — увеличение уровня глюкозы в сыворотке крови (p<0,05). Наибольшее количество статистически значимых изменений определялось при сочетании СД2 и АГ. Так, у носителей генотипа АА тестировалось уменьшение уровня ЛНП (p<0,05) и увеличение уровня глюкозы и ИМТ (p<0,05; p<0,01). При генотипе АС определялось только увеличение уровня глюкозы (p<0,05). Изолированная АГ сопровождалась увеличением ИМТ у носителей генотипа АА (p<0,01).

Таблица 7

Ассоциации генетического варианта rs5186(A1166C) гена *AGTR1* с дислипидемией и показателями гликемии

Генотипы генетического варианта rs5186(A1166C)	Холестерин общий, ммоль/л	ЛНП, ммоль/л	ЛВП, ммоль/л	ТГ, ммоль/л	Глюкоза, ммоль/л	HbA _{1c} , %	ИМТ, кг/м ²
СД2							
AA, n=9	5,2 (4,3;6)	3,7 (3;5,8)	1,1 (0,9;1)	1,8 (1,6;3,1)	10 (9,5;15)*	8,6 (8;9)	30 (23;30)
AC, n=5	5,5 (5,2;5,8)	3,4 (3,2;5)	1,3 (1,2;1,6)	2,4 (2,2;2,7)*	12,5 (10;16)*	9 (8;9)	26 (25;27)
CC, n=0	-	-	-	-	-	-	-
СД2 и АГ							
AA, n=36	5,7 (4,6;6)	2,8 (2;4)*	1 (0,9;1,5)	1,7 (1,5;2,3)	10 (8;14)*	9,5 (7,6;11)	32 (29;38)**
AC, n=15	5,6 (5;6,5)	3,4 (3;4)	1 (0,9;1,2)	1,9 (1,4;2,9)	9,8 (8;12)*	8,3 (7;11)	28 (28;33)
CC, n=6	6,1 (5,8;6)	4,5 (3,9;5)	1 (1;1,3)	1,7 (1;2)	11 (9;15)	9,5 (8;9,5)	29 (28;29)
АГ							
AA, n=25	5,9 (5,2;7)	3,2 (3;4,2)	1 (1;1,6)	1,9 (1,4;2,7)	5,5 (5;6)	-	31 (28;22)**
AC, n=16	5,7 (5;6)	3,5 (2,3;4,7)	1,7 (1;2)	1,3 (0,7;2,8)	5,2 (5;5,5)	-	30 (28;32)
CC, n=7	6 (5,6;6)	4 (2,7;4,3)	1,5 (1,4;1,9)	1,3 (0,8;1,5)	6 (5,4;6,5)	-	29 (25;34)
Контроль							
AA, n=29	5,8 (5;7)	3,7 (3;4,3)	1,3 (1;1,6)	1 (0,9;1,8)	5,2 (4,9;5,6)	-	26 (24;29)
AC, n=12	5,2 (5;5,5)	3,5 (2,2;8)	1,4 (1,2;1,8)	1,1 (0,8;2)	5,7 (5,4;6)	-	28 (27;30)
CC, n=3	-	-	-	-	-	-	-

Примечание: * — p<0,05; ** — p<0,01 при сравнении с такими же генотипами контрольной группы (Т-критерий Манна-Уитни).

Сокращения: АГ — артериальная гипертензия, ИМТ — индекс массы тела, ЛВП — липопротеиды высокой плотности, ЛНП — липопротеиды низкой плотности, СД2 — сахарный диабет 2 типа, ТГ — триглицериды, НbA_{1c} — гликированный гемоглобин.

Обсуждение

В настоящей работе представлены ассоциации генетических вариантов генов РААС — AGT и AGTR1с биомаркерами обмена углеводов и липидов при СД2 в сочетании и без сочетания с АГ у жителей Дагестана, основанные на статистически значимых различиях изученных показателей у носителей тех или иных генотипов РААС. Отличительными особенностями полученных результатов являются их многообразие и разнонаправленность. Представить вероятную патогенетическую схему причинно-следственных взаимоотношений достаточно проблематично, поскольку интерпретация генетического материала сводится к констатации значимых ассоциаций генетических вариантов с теми или иными клиническими или лабораторно-инструментальными признаками и расчетам соответствующих величин риска развития заболевания или синдрома. Тем не менее, при обсуждении основного результата нашего исследования можно выделить наиболее очевидные закономерности и попытаться оценить их практическую значимость.

Гиперинсулинемия была характерна для всех изученных подгрупп больных и во всех подгруппах была ассоциирована с генотипом AA генетического варианта rs5186(A1166C) гена *AGTR1*. Кроме этого, у больных СД2 в сочетании с АГ и изолированной АГ гиперинсулинемия была ассоциирована с ТТ-генотипом генетического варианта rs699(T704C) гена *AGT*. Это согласуется с данными ряда исследований, в соот-

ветствии с которыми одним из важных факторов гиперинсулинемии и ИР при СД2 является активация РААС и увеличение сывороточного АТ II [4-6].

Весьма интересны ассоциации генетических вариантов РААС с сывороточными уровнями С-пептида. По нашим данным, при СД2 таких ассоциаций не было, а при СД2 в сочетании с АГ и при изолированной АГ эти ассоциации присутствовали только в отношении одного гена — AGT и затрагивали генотип СТ генетического варианта rs4762(C521T), а также генотип TC генетического варианта rs699(T704C). Необходимо отметить, что, согласно нашим предшествующим результатам, эти же генотипы были ассоциированы с уменьшением риска развития СД2 в сочетании с АГ. Отметим также, что во всех случаях речь идет о повышенном уровне С-пептида в сыворотке крови по сравнению с контролем. Клиническая значимость этого показателя известна. С-пептид и инсулин продуцируются клетками поджелудочной железы в эквимолярных концентрациях. Но первый имеет больший период полураспада, что позволяет использовать концентрацию С-пептида в качестве более точной оценки функционального состояния инкреторной функции β-клеток поджелудочной железы [21]. Показано, что С-пептид позитивно ассоциирован с сердечно-сосудистыми заболеваниями и диабетической ретинопатией [22]. Несомненно, что учет генетической составляющей уровня С-пептида в сыворотке крови является информативным и прогностически обоснованным.

У обследованных больных мы определили снижение уровня глюкагона, антагониста инсулина, и это снижение было ассоциировано у больных СД2 в сочетании с АГ и изолированной АГ с генотипами СС и СТ генетического варианта rs4762(C521T) гена AGT, генотипом TC генетического варианта rs699(T704C) гена AGT и генотипом AA генетического варианта rs5186(A1166C) гена AGTR1. Последний генотип, согласно нашим предыдущим результатам [20], был ассоциирован со снижением вероятности развития СД2 в сочетании с АГ. Следует отметить, что ассоциаций указанных генетических вариантов с уровнем глюкагона в сыворотке крови у больных только СД2 мы не обнаружили. Можно предположить, что наличие генетических вариантов системы РААС, активация этой системы оказывают влияние, прежде всего, на уровень АД, колебания которого в подгруппе обследованных нами больных СД2 не выходили за пределы 130-140/80-90 мм рт.ст. Очевидно, что гормональный баланс при СД2, СД2 в сочетании с АГ и изолированной АГ у жителей Дагестана имеет в качестве важной функциональной составляющей генетическую детерминированность, а также, вероятно, и региональные особенности. Последнее обстоятельство подчеркивается во всех популяционно-генетических исследованиях [17, 18].

Что же касается липидного обмена, то результаты также весьма интересны. Ассоциации сывороточного уровня лептина с генетическими вариантами системы РААС были определены только в подгруппе больных СД2. Снижение уровня лептина было ассоциировано с СС-генотипом генетического варианта гs4762(С521Т) гена *AGT* и AA-генотипом генетического варианта rs5186(A1166C) гена *AGTR1*. А увеличение уровня этого гормона было ассоциировано с генотипом ТС генетического варианта rs699(Т704C) гена *AGT*. Снижение чувствительности тканей к лептину на фоне повышения концентрации этого гормона в сыворотке крови — ЛР является патогенетическим звеном СД2, МС, ожирения и дислипидемии [13]. ЛР часто сочетается с ИР [14].

В соответствии с результатами наших исследований, гиперинсулинемия при СД2 в сочетании с АГ и гиперлептинемия при СД2 ассоциированы с генотипами ТТ и ТС генетического варианта гs699(T704C) гена АGT. Однако в подгруппе больных только с СД2 мы наблюдаем противоположную картину, а именно — генотип АА генетического варианта rs5186(A1166C) гена АGTR1 ассоциирован со снижением уровня лептина, и этот же генотип одновременно ассоциирован с увеличением уровня инсулина в сыворотке крови. Патофизиологическая интерпретация полученных результатов, как и всех популяционно-генетических исследований, весьма затруднительна, но подчеркивает участие генетических факторов в нарушении гормонзависимых про-

цессов обмена углеводов и липидов при СД2, причем это участие может носить как синергический, так и антагонистический характер.

Отдельного внимания заслуживает оценка ассоциаций генетических вариантов системы РААС с показателями дислипидемии. Гипертриглицеридемия во всех трёх изученных подгруппах, а также повышение уровня холестерина при СД2 в сочетании с АГ, были ассоциированы с генетическими вариантами единственного гена PAAC - AGT. Речь идет о генотипе СТ генетического варианта rs4762(C521T) и генотипах ТТ и ТС генетического варианта rs699(T704C). Кроме этого, отметим, что генетические варианты этого гена ассоциированы и с увеличением ИМТ при СД2 и АГ. Ассоциаций гипертриглицеридемии и других показателей дислипидемии при СД2 и МС с генетическими вариантами РААС в литературе мы не встречали. Дислипидемия при СД2 и МС изучена в основном в отношении генетического варианта Pro12Ala и Ala12 аллеля гена $PPAR-\gamma 2$, а также генетического варианта 276 T/T гена ADIPOQ [20, 22]. Полученные результаты позволяют предположить участие генетических вариантов гена АСТ, помимо регуляции уровня АД, также и в изменениях липидного обмена при СД2.

Заключение

Ассоциации генетических вариантов генов *АGT* и AGTR1 системы PAAC с биомаркерами углеводного и липидного обменов при СД2, при СД2 в сочетании с АГ и изолированной АГ у жителей Дагестана свидетельствуют о вероятной патогенетической связи мутационного процесса в системе РААС с сывороточными уровнями инсулина, лептина, С-пептида, глюкагона и показателями дислипидемии. С учетом того, что все медико-генетические исследования касаются, в основном, оценки персонифицированной и прогностической значимости генетических тестов, результаты настоящей работы несколько расширяют горизонт интерпретации генетического материала. Речь идет о том, что на основании полученных результатов можно предположить связь генетических вариантов генов системы РААС не только с продуктами активации этой системы — активностью АПФ, уровнями ангиотензинов 7 видов и прежде всего AT II, продукцией альдостерона, но и с гормонзависимыми процессами обмена углеводов и липидов. Подтверждением подобного взгляда являются представленные в настоящей работе ассоциации генетических вариантов rs4762(C521T) и rs699(T704C) гена AGT, генетического варианта rs5186(A1166C) гена AGTR1 с уровнями инсулина, лептина, С-пептида, глюкагона, ТГ, холестерина, глюкозы в сыворотке крови, а также ИМТ у обследованных больных. Разумеется, выявление ассоциаций генетических вариантов генов РААС является только небольшим

фрагментом сложной генетической системы, контролирующей обмен углеводов и липидов, и эти ассоциации пока не дают оснований для определения конкретизированных причинно-следственных взаимосвязей при СД2 и АГ с региональными особенностями. Но эти результаты помогут наметить пути дальнейших, более углубленных исследований в этом направлении. Персонифицированные результаты комплексного исследования генетических вариантов

РААС, оценки гормонального статуса и липидного спектра при СД2 и АГ, несомненно, могут обладать достаточной прогностической мощностью, что позволит обоснованно представить рекомендации конкретным больным и их семьям.

Отношения и деятельность: все авторы заявляют об отсутствии потенциального конфликта интересов, требующего раскрытия в данной статье.

Литература/References

- Dedov II, Shestakova MV, Tarasov EV, et al. Pharmacoeconomic assessment of type 2 diabetes mellitus care on the base of Endocrinology Research Centre, Moscow. Diabetes Mellit. 2012;15(3):101-9. (In Russ.) Дедов И.И., Шестакова М.В., Тарасов Е.В. и др. Фармакоэкономическая оценка терапии пациентов с сахарным диабетом 2 типа на базе ФГБУ Эндокринологический научный центр. Сахарный диабет. 2012;15(3):101-9. doi:10.14341/2072-0351-6093.
- Sharipov RA. Arterial hypertension and diabetes mellitus. Russian Journal of Cardiology. 2008;(3):71-5. (In Russ.) Шарипов Р. А. Артериальная гипертензия и сахарный диабет. Российский кардиологический журнал. 2008;(3):71-5.
- Pinkhasov BB, Selyatitskaya VG, Mitrofanov IM. Combination of arterial hypertension and type 2 diabetes mellitus with obesity. Clinical medicine. 2014;(9):65-9. (In Russ.) Пинхасов Б.Б., Селятицкая В.Г., Митрофанов И.М. Сочетание артериальной гипертензии и сахарного диабета 2-го типа с ожирением. Клиническая медицина. 2014;(9):65-9
- Libianto R, Batu D, MacIsaac RJ, et al. Pathophysiological Links Between Diabetes and Blood Pressure. Can. J. Cardiol. 2018;34(5):585-94. doi:10.1016/j.cjca.2018.01.010.
- Joseph JJ, Echouffo-Tcheugui JB, Kalyani RR, et al. Aldosterone, Renin and Diabetes Mellitus in African Americans: The Jackson Heart Study. J. Clin. Endocrinol. Metab. 2016;101(4):1770-8. doi:10.1210/jc.2016-1002.
- Underwood PC, Adler GK. The Renin Angiotensin Aldosterone System and Insulin Resistance in Humans. Curr. Hypertens. Rep. 2013;15(1):59-70. doi:10.1007/s11906-012-0323-2.
- Das UN. Renin-angiotensin-aldosterone system in insulin resistance and metabolic syndrome. J. Transl. Intern. Med. 2016;4(2):66-72. doi:10.1515/jtim-2016-0022.
- Apperloo EM, Pena MJ, de Zeeuw D, et al. Individual variability in response to renin angiotensin aldosterone system inhibition predicts cardiovascular outcome in patients with type 2 diabetes: A primary care cohort study. Diabetes, Obes. Metab. 2018;20(6):1377-83. doi:10.1111/dom.13226.
- Griffin T, Wall D, Browne G, et al. Associations between glycaemic control and activation
 of the renin-angiotensin-aldosterone system in participants with type 2 diabetes
 mellitus and hypertension. Ann. Clin. Biochem. Int. J. Lab. Med. 2018;55(3):373-84.
 doi:10.1177/0004563217728964.
- Ojha A, Ojha U, Mohammed R, et al. Current perspective on the role of insulin and glucagon in the pathogenesis and treatment of type 2 diabetes mellitus. Clin. Pharmacol. Adv Appl. 2019;11(3):57-65. doi:10.2147/CPAA.S202614.
- Lelis D, Freitas DF, Machado AS, et al. Angiotensin-(1-7), Adipokines and Inflammation. Metabolism. 2019;95(3):36-45. doi:10.1016/j.metabol.2019.03.006.
- Bagenova EA, Belaeva OD, Berezina AB, et al. The Renin Angiotensin Aldosterone System and Arterial hypertension on obesity. Arterial hypertension. 2013;19(5):389-96.

- (In Russ.) Баженова Е.А., Беляева О.Д., Березина А.В. и др. Ренин-ангиотензинальдостероновая система у больных абдоминальным ожирением и артериальной гипертензией. Артериальная гипертензия. 2013;19(5):389-96.
- Litvinova LS, Vasilenko MA, Zatolokin PA. Adipokines in metabolic processes regulating during obesity treatment. Diabetes mellitus. 2014;3:51-9. (In Russ.) Литвинова Л.С., Василенко М.А., Затолокин П.А. и др. Роль адипокинов в регуляции метаболических процессов при коррекции ожирения. Сахарный диабет. 2014;3:51-9. doi:10.14341/ DM2014351-59
- Borodkina DA, Gruzdeva OV, Akbasheva OE, et al. Leptin resistance: unsolved diagnostic issues. Problems of Endocrinology. 2018;64(1):62-6 (In Russ.) Бородкина Д.А., Груздева О.В., Акбашева О.Е. и др. Лептинорезистентность, нерешенные вопросы диагностики. Проблемы эндокринологии. 2018;64(1):62-6. doi:10.14341/probl8740.
- Marusyn OV. The relationship between obesity, glycemia and leptin level of type 2 diabetes mellitus patients with metabolic syndrome. Wiad. Lek. 2018;71(6):1165-8.
- Underwood PC, Sun B, Williams JS, et al. The association of the angiotensinogen gene with insulin sensitivity in humans: a tagging single nucleotide polymorphism and haplotype approach. Metabolism. 2011;60(8):1150-7. doi:10.1016/j.metabol.2010.12.009.
- Pan Y-H, Huang Y-M, Qiao Y-C, et al. Family history and renin-angiotensin system gene polymorphisms in Chinese patients with type 2 diabetes mellitus. Medicine (Baltimore). 2017;96(51):e9148. doi:10.1097/MD.000000000009148.
- Ahmad N, Jamal R, Shah SA, et al. Renin-Angiotensin-Aldosterone System Gene Polymorphisms and Type 2 Diabetic Nephropathy in Asian Populations: An Updated Meta-analysis. Curr. Diabetes. Rev. 2019;15(4):263-76. doi:10.2174/157339981466618 0709100411.
- Joyce-Tan SM, Zain SM, Abdul Sattar MZ. Renin-Angiotensin System Gene Variants and Type 2 Diabetes Mellitus: Influence of Angiotensinogen. J Diabetes Res. 2016:1-7. doi:10.1155/2016/2161376.
- Saidov MZ, Mammaev SN, Magadova HM, et al. Association of angiotensinogen and angiotensin II receptor I polymorphisms with biomarkers of carbohydrate and lipid metabolism in type 2 diabetes mellitus and arterial hypertension in residents of Dagestan. Diabetes mellitus. 2019;22(6):568-76. (In Russ.) Саидов М. З., Маммаев С. Н., Магадова Г. М. и др. Генетический полиморфизм ренин-ангиотензин-альдостероновой системы при сахарном диабете 2 типа и при сочетании с артериальной гипертензией у жителей Дагестана. Сахарный диабет. 2019;22(6):568-76. doi:10.14341/ DM10207
- Bandesh K, Prasad G, Giri AK, et al. Genomewide association study of C-peptide surfaces key regulatory genes in Indians. J. Genet. 2019;98(1):8. doi:10.1007/s12041-018-1046-1.
- Wang Y, Wan H, Chen Y, et al. Association of C-peptide with diabetic vascular complications in type 2 diabetes. Diabetes Metab. 2020;46(1):33-40. doi:10.1016/j.diabet.2019.04.004.