ISSN 1560-4071 (print) ISSN 2618-7620 (online)

Первые результаты изучения экспрессии матриксных металлопротеиназ-1/-2/-9/-12 в ксеногенных тканях эпоксиобработанных биопротезов клапанов сердца, эксплантированных по причине дисфункций

Костюнин А.Е., Глушкова Т.В.

Цель. Изучить экспрессию матриксных металлопротеиназ (ММП)-1/-2/-9/-12 в створках эксплантированных по причине дисфункции эпоксиобработанных биопротезов клапанов сердца (БП), выявить возможные пути накопления указанных ферментов в ксенотканях имплантатов.

Материал и методы. Исследовано 19 створок от 7 БП, удаленных из митральной или аортальной позиций в ходе операций репротезирования. Срезы тканей для микроскопии подготавливали с помощью криотома. Типирование клеток и выявление экспрессии ММП-1/-2/-9/-12 в образцах проводили с применением иммуногистохимического окрашивания антителами против PTPRC/CD45, CD68, миелопероксидазы и соответствующих ММП. Анализ образцов с иммуногистохимическими окрасками осуществляли методом световой микроскопии.

Результаты. В 17 изученных створках от 6 эксплантированных БП выявлены спорадичные клеточные инфильтраты, состоящие из макрофагов (РТРRС/ CD45^{*}, CD68^{*}). Положительная окраска на ММП-1/-2/-9/-12 была солокализована с инфильтратами иммунных клеток. Также окраску на ММП-9 наблюдали и в отсутствии клеточной инфильтрации. Перикардиальный БП, удалённый из-за тромбоза через 2 дня после имплантации, не показал признаков макрофагальной инфильтрации или экспрессии ММП в ксенотканях, но образовавшийся на его поверхности тромб демонстрировал окрашивание на ММП-9 и включал большое количество нейтрофилов, положительных в отношении миелопероксидазы.

Заключение. Макрофаги и другие иммунные клетки, инфильтрирующие ксеноткани эпоксиобработанных БП, являются источниками ММП-1/-2/-9/-12. Кроме того, ММП-9 может диффундировать в створки БП из плазмы крови пациентов. Депонирование ММП в протезном ксенобиоматериале может способствовать разрывам и кальцификации створчатого аппарата БП, приводя к развитию дисфункции имплантатов.

Ключевые слова: биопротезы клапанов сердца, структурная дегенерация клапана, клеточная инфильтрация, матриксные металлопротеиназы.

Отношения и деятельность. Исследование проведено в рамках комплексной программы фундаментальных научных исследований по фундаментальной теме НИИ КПССЗ № 0546-2019-0002 "Патогенетическое обоснование разработки имплантатов для сердечно-сосудистой хирургии на основе биосовместимых материалов, с реализацией пациент-ориентированного подхода с использованием математического моделирования, тканевой инженерии и геномных предикторов".

ФГБНУ Научно-исследовательский институт комплексных проблем сердечнососудистых заболеваний, Кемерово, Россия.

Костюнин А.Е.* — к.б.н., н.с. лаборатории новых биоматериалов, ORCID: 0000-0001-6099-0315, Глушкова Т.В. — к.б.н., с.н.с. лаборатории новых биоматериалов, ORCID: 0000-0003-4890-0393.

*Автор, ответственный за переписку (Corresponding author): Rhabdophis_tigrina@mail.ru

БП — биопротезы клапанов сердца, ВМ — внеклеточный матрикс, ГА — глутаральдегид, ММП — матриксные металлопротеиназы, ФСБ — фосфатно-солевой буфер.

Рукопись получена 22.06.2020 Рецензия получена 04.08.2020 Принята к публикации 06.08.2020

(cc) BY 4.0

Для цитирования: Костюнин А. Е., Глушкова Т. В. Первые результаты изучения экспрессии матриксных металлопротеиназ-1/-2/-9/-12 в ксеногенных тканях эпоксиобработанных биопротезов клапанов сердца, эксплантированных по причине дисфункций. *Российский кардиологический журнал.* 2020;25(10):3978. doi:10.15829/1560-4071-2020-3978

Expression of matrix metalloproteinases 1, 2, 9, 12 in xenogenic tissues of epoxy-crosslinked bioprosthetic heart valves explanted due to dysfunction

Kostyunin A. E., Glushkova T. V.

Aim. To study the expression of matrix metalloproteinases (MMPs) 1, 2, 9, 12 in the leaflets of epoxy-crosslinked bioprosthetic heart valves (BHVs) explanted due to dysfunction and to study the possibility to accumulate these enzymes in xenogenic tissues.

Material and methods. We examined 19 leaflets of 7 mitral and aortic BHVs removed during re-replacement. Tissue sections for microscopy were prepared using a cryotome. Cellular typing and detection of MMP 1, 2, 9, 12 expression in samples were performed using immunohistochemical staining with antibodies to PTPRC/CD45, CD68, myeloperoxidase, and the corresponding MMPs. Analysis of samples was performed by light microscopy.

Results. In 17 studied leaflets from 6 explanted BHVs, sporadic infiltrates consisting of macrophages (PTPRC/CD45⁺, CD68⁺) were revealed. A positive staining for MMP 1, 2, 9, 12 was colocalized with immune cell infiltrates. Also, positive staining was observed without cell infiltration. The pericardial BHV removed due to thrombosis 2 days after implantation did not show signs of macrophage infiltration or MMP

expression in xenogenic tissues, but the thrombus stained positive for MMP-9 and included a large number of neutrophils positive for myeloperoxidase.

Conclusion. Macrophages and other immune cells infiltrating xenogenic tissues of epoxy-crosslinked BHV are sources of MMPs 1, 2, 9, 12. In addition, MMP-9 can diffuse into BHV leaflets from the blood plasma of patients. The deposition of MMP may contribute to rupture and calcification of the leaflets leading to the implant dysfunction.

Key words: bioprosthetic heart valves, structural valve degeneration, cell infiltration, matrix metalloproteinases.

Relationships and Activities. This study was carried within the program of basic research on the fundamental subject of Research Institute for Complex Issues of Cardiovascular Diseases Nº 0546-2019-0002 "Pathogenetic rationale for the development of implants for cardiovascular surgery based on biocompatible materi-

als, with the implementation of a patient-centered approach using mathematical modeling, tissue engineering methods and genomic predictors".

Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia.

Kostyunin A. E.* ORCID: 0000-0001-6099-0315, Glushkova T. V. ORCID: 0000-0003-4890-0393.

Сегодня протезирование клапанов сердца является основным способом радикального лечения клапанных пороков [1, 2]. Ежегодно в мире выполняют >200 тыс. таких операций и согласно прогнозам к 2050г их количество возрастёт до 850 тыс., что обусловлено демографическим старением населения развитых стран, сопровождаемым ростом распространённости заболеваний клапанного аппарата сердца [3]. Для замены поражённых нативных клапанов чаще всего используют механические или ксеногенные биопротезы клапанов сердца (БП). Последние изготавливают из тканей животного происхождения, стабилизированных глутаральдегидом (ГА) или эпоксисоединениями [4]. Оптимальные гемодинамические показатели и низкая тромбогенность выгодно отличают биологические заменители от механических [1, 2], однако даже современные БП подвержены структурной дегенерации в течение 10-15 лет после имплантации, что резко ограничивает их использование в хирургической практике [5].

Процессы, стоящие за структурной дегенерацией БП, изучены слабо. Данные современных исследований дают основание предполагать, что в их основе могут лежать иммунозависимые механизмы, отчасти напоминающие те, что задействованы при отторжении трансплантатов донорских органов и развитии атеросклеротического поражения сосудов [6, 7]. Результаты ряда оригинальных исследований демонстрируют присутствие в створках эксплантированных ГАобработанных БП плотных макрофагальных инфильтратов, солокализованных с участками дегенерировавшей биоткани [8, 9]. Показано, что инфильтрирующие БП клетки продуцируют матриксные металлопротеиназы (ММП) [8, 9]. Последние представляют собой цинк-зависимые протеолитические ферменты, катализирующие расщепление фибриллярных белков внеклеточного матрикса (ВМ), таких как коллагены и эластин [10]. Потенциально, депонирование ММП в тканях функционирующих БП может способствовать структурному разрушению протезного ксенобиоматериала и развитию гемодинамически значимой обструкции или регургитации клапана, обусловленных кальцификацией или разрывом створчатого аппарата. Данные in vivo экспериментов, свидетельствующие о том, что эластолиз способствует кальцификации биологической ткани [11], подтверждают это предположение. Также высокие уровни

*Corresponding author: Rhabdophis_tigrina@mail.ru

Received: 22.06.2020 Revision Received: 04.08.2020 Accepted: 06.08.2020

For citation: Kostyunin A. E., Glushkova T. V. Expression of matrix metalloproteinases 1, 2, 9, 12 in xenogenic tissues of epoxy-crosslinked bioprosthetic heart valves explanted due to dysfunction. *Russian Journal of Cardiology*. 2020;25(10):3978. (In Russ.) doi:10.15829/1560-4071-2020-3978

ММП-2 и особенно ММП-9 отмечены в тканях ГАобработанных БП, эксплантированных по причине разрывов створок [9].

Несмотря на потенциально важную роль ММП в развитии структурной дегенерации БП, изучению экспрессии ферментов этой группы в тканях имплантатов было посвящено ограниченное количество исследований [8, 9]. Полный спектр ММП, присутствующих в ксенотканях БП, до сих пор неизвестен. Возможные пути их накопления в протезных створках также плохо изучены. Данные по наличию ММП и их роли в процессах дегенерации эпоксиобработанных БП в доступной литературе отсутствуют. Таким образом, целью настоящего исследования стала оценка экспрессии ММП-1/-2/-9/-12 в ксенотканях эксплантированных по причине дисфункции эпоксиобработанных БП и выявление связанных с ней закономерностей. Выбор ММП перечисленных типов обусловлен тем, что они являются наиболее изученными ферментами рассматриваемого семейства, ответственными за патологическое ремоделирование ВМ створок поражённых нативных клапанов сердца [12].

Материал и методы

Материалом для настоящего исследования послужили эпоксиобработанные БП (ЗАО "НеоКор", Россия), удалённые из митральной или аортальной позиций у 7 пациентов в ходе операций репротезирования, выполненных в 2019-2020гг. Всего исследовано 19 створок от 7 эксплантированных БП. Среди последних 4 образца были представлены ксеноаортальными БП (модели "КемКор" (n=2) и "ПериКор" (n=2)), 3 — перикардиальными (модели "ЮниЛайн" (n=2) и "ТиАра" (n=1)). Средний возраст пациентов при первичных хирургических вмешательствах составил 57±11 лет. Средний срок функционирования $Б\Pi - 12\pm 8$ лет, за исключением перикардиального БП, иссечённого через 2 дня после имплантации из-за тромбоза. Исследование было одобрено локальным этическим комитетом. БП использовали с учётом наличия подписанного добровольного информированного согласия пациентов.

Полученный при реоперациях материал после макроскопического анализа замораживали при температуре -140° С. Для изучения клеточной инфильтрации протезных ксенотканей и экспрессии в них

Таблица 1

Антигены использованных антител	Каталожные номера антител	Назначение	Применяемое разведение
CD45	ab10558	Детекция PTPRC/CD45 (пан-лейкоцитарный маркер). Выявление иммунных клеток в БП.	1:3000
CD68	ab227458	Детекция CD68 (макрофагальный маркер). Оценка макрофагальной инфильтрации БП.	1:500
Ииелопероксидаза	ab208670	Детекция миелопероксидазы (маркер нейтрофилов). Оценка острого воспалительного ответа на БП.	1:1500
ИМП-1	ab52631	Детекция ММП-1/-2/-9/-12. Выявление экспрессии ММП в ксенотканях БП.	1:1000
ИМП-2	ab92536		
ИМП-9	ab38898		
ИМП-12	ab52897		

Первичные антитела, использованные в исследовании

Сокращения: БП — биопротезы клапанов сердца, ММП — матриксные металлопротеиназы.

1

ММП, с помощью криотома Microm HM 525 (Thermo Scientific, Германия) были подготовлены серийные срезы толщиной 7±1 мкм, помещённые на предметное стекло по 4-6 штук. При изготовлении срезов от каждого БП использовали центральную часть 2-3 створок от основания до свободного края, а также участки с дегенеративными изменениями. Перед окрашиванием срезы 10 мин фиксировали при комнатной температуре 4% параформальдегидом с последующей трехкратной отмывкой (по 5 мин) в фосфатно-солевом буфере (ФСБ) (рН 7,4) на шейкере (Polymax 1040, Heidolph, 25 об./мин). Типирование клеток (маркеры: PTPRC/CD45, CD68 и миелопероксидаза) и выявление ММП-1/-2/-9/-12 производили посредством ручного иммуногистохимического окрашивания, для чего использовали соответствующие первичные антитела (Abcam PLC, Великобритания) (табл. 1). Иммуногистохимическую реакцию выполняли с помощью набора NovoLink Polimer Detection System (RE7150-CE, Leica Microsystems Inc., CIIIA) согласно модифицированному протоколу производителя. Сначала осуществляли блокировку эндогенной пероксидазы 4% раствором пероксида водорода (Реroxidase Block) в течение 5 мин. Далее срезы дважды отмывали в ФСБ и блокировали неспецифическое связывание антител 0,4% солевым раствором казеина со вспомогательными pearentaми (Protein Block) в течение часа. Первичные антитела разводили согласно протоколу производителя в 1% солевом растворе бычьего сывороточного альбумина, применяемые разведения указаны в таблице 1. Срезы инкубировали с антителами 20 часов в закрытом коробе при +4° С. Далее срезы трижды отмывали в ФСБ и 30 мин инкубировали с противокроличьими антителами (Novolink Polymer). После трехкратной отмывки в ФСБ срезы 2 мин обрабатывали 0,087% раствором диаминобензидина. Затем срезы отмывали бидистиллированной водой и помещали в гематоксилин (из набора) на 10 мин. Далее производили подсинение срезов в проточной воде (5 мин), их обезвоживание в трех сменах 95% этанола (по 5 мин) и просветление в 3 сменах ксилола (по 5 мин), с последующим заключением под покровное стекло (Витрогель, БиоВитрум).

Анализ образцов с иммуногистохимическими окрасками осуществляли с использованием светового микроскопа AxioImager.A1 (Zeiss, Германия), обработку изображений производили с помощью программы AxioVision (Zeiss, Германия).

В качестве контроля использовали интактные эпоксиобработанные ксеноткани: створки аортального клапана свиньи и бычий перикард, приобретённые у ЗАО "НеоКор" (Кемерово, Россия). Также на каждом стекле выделяли по одному срезу с отрицательным контролем первичного и вторичного антител.

Результаты

Макроскопическое описание эксплантированных БП. Включенные в исследование ксеноаортальные БП имели признаки первичной тканевой несостоятельности в виде отрывов створок в области комиссур, перфораций и кальцификации. Причиной репротезирования для данных БП являлась регургитация. Стоит отметить, что кальцификаты были незначительного размера, без формирования стенозируещего эффекта для всех изученных БП. Отмечена фиксация створок паннусом со стороны выводных отделов с некоторым ограничением их подвижности.

Ксеноперикардиальные БП не имели признаков разрывов и перфораций створок, в одном из трёх протезов отмечена незначительная кальцификация. В одном случае причиной реоперации послужил ранний тромбоз БП.

Характеристика клеточной инфильтрации ксенотканей БП. Инфильтрация протезного ксенобиоматериала клетками реципиента выявлена в 17 створках, взятых от 6 эксплантированных БП, функциониро-

Рис. 1. Результаты имунногистохимического окрашивания образцов на PTPRC/CD45 и CD68. Наиболее плотные клеточные инфильтраты отмечены в разрыхлённых поверхностных слоях BM створок ксеноаортальных БП (**A**), тогда как в их толще присутствовали небольшие группы иммунных клеток, располагающиеся вблизи кальцинатов (**Б**). Не выявлено инфильтрации клеток реципиента вглубь ксенотканей перикардиальных БП: клеточные скопления присутствовали лишь на поверхности створок и имели слабое окрашивание на исследуемые маркёры (**B**).

вавших в течение 2,5-25 лет. В изученных образцах отмечены спорадичные клеточные инфильтраты, локализованные преимущественно на поверхности или в разрыхлённых предповерхностных слоях ксеногенного ВМ вблизи основания створок. Большая клеточная инфильтрация отмечена со стороны выводного отдела. В свою очередь, не обнаружено признаков инфильтрации клеток реципиента в двух изученных створках, взятых от перикардиального БП, удалённого из-за тромбоза через 2 дня после имплантации. При этом отмечено присутствие большого числа клеток в составе тромба, сформированного на поверхности створчатого аппарата указанного БП. Агрессивная клеточная инфильтрация, связанная с проникновением клеток вглубь ксенобиоматериала, выявлена только в створках ксеноаортальных БП, при наличии в образцах крупных кальцификатов, перфораций или участков с выраженным разволокнением BM, вблизи которых и были сосредоточены значительные скопления клеток.

По результатам иммуногистохимического окрашивания установлено, что большинство инфильтрирующих протезный ксенобиоматериал клеток экспрессируют PTPRC/CD45 и CD68 (рис. 1). В створках БП, функционировавшего в течение 2 дней, данные маркеры не выявлены, однако клетки в тромбе оказались положительны в отношении миелопероксидазы (рис. 2). Клеток, положительно окрашиваемых антителами против миелопероксидазы, в других об разцах не выявлено.

Экспрессия ММП в ксенотканях эксплантированных БП. Иммуногистохимическое окрашивание срезов антителами против ММП-1/-2/-9/-12 выявило присутствие исследуемых ферментов во всех створках БП, за исключением образцов, взятых от имплантата, функционировавшего в течение двух дней. Положи-

Рис. 2. Имунногистохимическое окрашивание антителами против миелопероксидазы створок БП, удалённого через 2 дня после имплантации, показывает присутствие многочисленных нейтрофилов в составе тромба, образовавшегося на поверхности створок. В то же время клеток положительных на PTPRC/CD45 и CD68 в данных образцах не выявлено.

Рис. 3. Результаты имунногистохимического окрашивания образцов на ММП-1/-2/-9/-12. ММП-1/-2/-12 солокализованы с клетками реципиента. Эта закономерность отчётливо видна на примере как слабо, так и сильно инфильтрированных клетками створок ксеноаортальных (**A**) (**Б**) и ксеноперикардиальных (**B**) протезов. В свою очередь, окрашивание на ММП-9 почти не зависит от присутствия клеток в створках (**A**, **Б** и **B**). Это позволяет предположить, что основным источником ММП-9 в функционирующих БП являются не клетки, а плазма крови пациентов. Отсутствие экспрессии всех ММП в ксенотканях протеза, удалённого через 2 дня после имплантации из-за тромбоза (**Г**), но интенсивное окрашивание тромботической массы на его поверхности антителами против ММП-9, подтверждает гипотезу о пропитывании протезных створок этим ферментом. **Сокращение:** ММП — матриксные металлопротеиназы.

тельное окрашивание на ММП-1/-2/-12 отмечено исключительно вблизи клеточных инфильтратов, тогда как окраску на ММП-9 наблюдали как в солокализации с клетками, так и в бесклеточном ВМ (рис. 3). Важно отметить, что интенсивность окраски ММП-9 не зависела от наличия клеток реципиента в образцах и оставалась высокой даже при их полном отсутствии. Наиболее интенсивная окраска на

Рис. 4. Интенсивность окраски на ММП-9 связана с плотностью ксенотканей: чем матрикс более плотный и структурированный, тем слабее сигнал фермента. Это заметно при сравнении створок ксеноаортальных (**A**) и ксеноперикардиальных протезов (**Б**), особенно их наиболее интенсивно окрашенных участков (нижний ряд). В створках ксеноаортальных протезов интенсивнее всего на ММП-9 окрашивается самый рыхлый спонгиозный слой.

ММП-9 отмечена для участков с разрыхлёнными тканями, а также для спонгиозного слоя створок ксеноаортальных БП (рис. 4). Створки ксеноаортальных БП окрашивались на ММП-9 интенсивнее таковых ксеноперикардиальных БП. В свою очередь, ксенобиоматериал БП, двое суток функционировавшего в организме пациента, не показал экспрессии изучаемых ферментов, однако образовавшийся на его поверхности тромб демонстрировал положительное окрашивание на ММП-9.

Во всех контролях положительной окраски на PTPRC/CD45, CD68 и миелопероксидазу, а также ММП-1/-2/-9/-12, не выявлено.

Обсуждение

В целом результаты настоящего исследования хорошо согласуются с данными, полученными другими авторами по ГА-обработанным БП [8, 9]. Окрашивание большинства клеток на маркеры PTPRC/ CD45 и CD68 свидетельствует о макрофагальной инфильтрации эпоксиобработанных имплантатов и указывает на их хроническое иммунное отторжение [7]. Створки БП, функционировавшего лишь 2 дня, не показали присутствия макрофагов, но содержали на своей поверхности тромботические массы с включёнными в их состав нейтрофилами, что свидетельствует об остром воспалительном ответе, возникающем в первые дни при имплантации любого инородного тела [13]. Опираясь на данные о характере окрашивания образцов антителами против ММП можно сделать вывод, что главным источником ММП-1/-2/-12 являются макрофаги, тогда как ММП-9 в основном диффундирует из плазмы крови. Важно отметить, что тенденция, связанная с накоплением ММП-9 из плазмы, для ксенотканей БП выявлена впервые. Различия в интенсивности окраски на ММП-9 могут свидетельствовать о том, что для створок ксеноаортальных БП характерна более выраженная диффузия этого фермента по сравнению со створками ксеноперикардиальных БП. По-видимому, такая закономерность обусловлена более рыхлой структурой ВМ фиксированных створок аортального клапана свиньи, сформированной в результате потери гликозаминогликанов, которые не стабилизируются ГА и диэпоксидными соединениями [14]. В свою очередь, бычий перикард сохраняет плотную структуру и после обработки консервантами, что, вероятно, препятствует диффузии в его толщу веществ из окружающих жидкостей. Примечательно, что ГА-обработанные ксеноперикардиальные БП чаще требуют замены из-за связанного с кальцификацией стеноза, тогда как ксеноаортальные более склонны к разрывам створок [15]. В настоящем исследовании для эпоксиобработанных ксеноаортальных БП также были отмечены разрывы и перфорации створок, чего не наблюдали у ксеноперикардиальных. Отчасти данная тенденция может быть объяснена более интенсивным накоплением протеолитических ферментов из плазмы крови тканями последних с последующим расщеплением коллагеновых волокон ВМ. Однако учитывая тот факт, что стабилизация ксеноматериала, используемого при производстве БП, подразумевает устойчивость к протеолизу, данная гипотеза требует экспериментального подтверждения.

Ограничения исследования. Использованные в исследовании ксеноаортальные и ксеноперикардиальные БП не сопоставимы по срокам функционирования и причинам дисфункций. Первые функционировали $15\pm6,5$ лет, вторые — 4 ± 2 лет. Таким образом, более агрессивная клеточная инфильтрация и более выраженное окрашивание против ММП-9 створок ксеноаортальных БП по сравнению с таковыми ксеноперикардиальных может являться следствием не структур-

Литература/References

- Baumgartner H, Falk V, Bax JJ, et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2017;38(36):2739-91. doi:10.1093/eurheartj/ehx391.
- Nishimura RA, Otto CM, Bonow RO, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2014;63(22):2438-88. doi:10.1016/j.jacc.2014.02.537.
- Bax JJ, Delgado V. Bioprosthetic heart valves, thrombosis, anticoagulation, and imaging surveillance. JACC Cardiovasc. Interv. 2017;10(4):388-90. doi:10.1016/j.jcin.2017.01.017.
- Kudryavtseva YuA. Bioprosthetic heart valves. From idea to clinical use. Complex Issues of Cardiovascular Diseases. 2015;4:6-16. (In Russ.) Кудрявцева Ю.А. Биологические протезы клапана сердца. От идеи до клинического применения. Комплексные проблемы сердечно-сосудистых заболеваний. 2015;4:6-16. doi:10.17802/2306-1278-2015-4-6-16.
- Capodanno D, Petronio AS, Prendergast B, et al. Standardized definitions of structural deterioration and valve failure in assessing long-term durability of transcatheter and surgical aortic bioprosthetic valves: a consensus statement from the European Association of Percutaneous Cardiovascular Interventions (EAPCI) endorsed by the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2017;38(45):3382-90. doi:10.1093/eurheartj/ehx303.
- Cote N, Pibarot P, Clavel MA. Incidence, risk factors, clinical impact, and management of bioprosthesis structural valve degeneration. Curr. Opin. Cardiol. 2017;32(2):123-9. doi:10.1097/HCO.00000000000372.
- Manji RA, Ekser B, Menkis AH, et al. Bioprosthetic heart valves of the future. Xenotransplantation. 2014;21(1):1-10. doi:10.1111/xen.12080.

ных различий их BM, а более сильного износа тканей, обусловленного большей продолжительностью периода функционирования. Для подтверждения полученных результатов необходимы дальнейшие исследования на сопоставимых выборках.

Заключение

В ксеногенных тканях эпоксиобработанных БП формируются спорадичные макрофагальные инфильтраты, являющиеся источниками матрикс-деградирующих ферментов, в частности, ММП-1/-2/-9/-12. При этом экспрессия ММП разных типов носит дифференциальный характер: ММП-1/-2/-12 локализуются исключительно вблизи скоплений клеток, тогда как высокие уровни ММП-9 могут быть детектированы даже в отсутствие клеточной инфильтрации. Это наблюдение даёт основание предполагать, что ММП-9 диффундирует в ксенобиоматериал из плазмы крови пациентов. Депонирование ММП в ксенотканях БП потенциально способно ускорять разрушение фибриллярных белков ВМ, способствуя кальцификации и/или перфорированию створок, что в конечном итоге ведёт к дисфункции клапанов.

Отношения и деятельность. Исследование проведено в рамках комплексной программы фундаментальных научных исследований по фундаментальной теме НИИ КПССЗ № 0546-2019-0002 "Патогенетическое обоснование разработки имплантатов для сердечнососудистой хирургии на основе биосовместимых материалов, с реализацией пациент-ориентированного подхода с использованием математического моделирования, тканевой инженерии и геномных предикторов".

- Shetty R, Pibarot P, Audet A, et al. Lipid-mediated inflammation and degeneration of bioprosthetic heart valves. Eur. J. Clin. Invest. 2009;39(6):471-80. doi:10.1111/j.1365-2362.2009.02132.x.
- Simionescu A, Simionescu DT, Deac RF. Matrix metalloproteinases in the pathology of natural and bioprosthetic cardiac valves. Cardiovasc. Pathol. 1996;5(6):323-32. doi:10.1016/s1054-8807(96)00043-9.
- Cui N, Hu M, Khalil RA. Biochemical and biological attributes of matrix metalloproteinases. Prog. Mol. Biol. Transl. Sci. 2017;147:1-73. doi:10.1016/bs.pmbts.2017.02.005.
- Bailey M, Xiao H, Ogle M, et al. Aluminum chloride pretreatment of elastin inhibits elastolysis by matrix metalloproteinases and leads to inhibition of elastin-oriented calcification. Am. J. Pathol. 2001;159(6):1981-6. doi:10.1016/S0002-9440(10)63048-9.
- Kostyunin AE, Yuzhalin AE, Ovcharenko EA, et al. Development of calcific aortic valve disease: do we know enough for new clinical trials? J. Mol. Cell. Cardiol. 2019;132:189-209. doi:10.1016/j.yjmcc.2019.05.016.
- Mariani E, Lisignoli G, Borzi RM, et al. Biomaterials: foreign bodies or tuners for the immune response? Int. J. Mol. Sci. 2019;20(3):pii:E636. doi:10.3390/ijms20030636.
- Rezvova MA, Kudryavceva YuA. Modern approaches to protein chemical modification in biological tissue, consequences and application. Bioorganicheskaia khimiia. 2017;44(1):1-16. (In Russ.) Резвова М.А., Кудрявцева Ю.А. Современные подходы к химической модификации белков в биологических тканях, последствия и применение. Биоорганическая химия. 2017;44(1):1-16. doi:10.7868/S0132342318010025.
- Arsalan M, Walther T. Durability of prostheses for transcatheter aortic valve implantation. Nat. Rev. Cardiol. 2016;13(6):360-7. doi:10.1038/nrcardio.2016.43.