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Chaotic global analysis of heart rate variability following power spectral 
adjustments during exposure to traffic noise in healthy adult women 

Garner D. M.1,2, Alves M.2, da Silva B. P.2, de Alcantara Sousa L. V.3, Valenti V. E.2

Aim. Previous studies have described the substantial impact 
of different types of noise on the linear behaviour of heart rate 
variability (HRV). Yet, there are limited studies about the com-
plexity or nonlinear dynamics of HRV during exposure to traffic 
noise. Here, we evaluated the complexity of HRV during traffic 
noise exposure via six power spectra and, when adjusted 
by the parameters of the Multi-Taper Method (MTM). 
Material and methods. We analysed 31 healthy female stu-
dents between 18 and 30 years old. Subjects remained 
at rest, seated under spontaneous breathing for 20 minutes 
with an earphone turned off and then the volunteers were 
exposed to traffic noise through an earphone for a period 
of  20 minutes. The traffic noise was recorded from a busy 
urban street and the sound involved car, bus, trucks engi-
neers and horn sounds (71-104 dB). 
Results. The results stipulate that CFP3 and CFP6 are the 
best metrics to distinguish the two groups. The most appro-
priate power spectra were, Welch and MTM. Increasing the 
DPSS parameter of MTM increased the performance of both 
CFP3 and CFP6 as mathematical markers. Adaptive was the 
preferred type for Thomson’s nonlinear combination method. 
Conclusion. CFP3 with the adaptive option for MTM, and 
increased DPSS is designated as the best mathematical 
marker on the basis of five statistical tests. 

Key words: autonomic nervous system, cardiovascular 
physiology, cardiovascular system, noise, noise occupa-
tional, nonlinear dynamics.
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Traffic noise exposure can be unpleasant and dis‑
tracting, which may have effects on physiological 
variables. It is often found in hazardous situations as 
a result of industrialization and urbanization [1]. 
Hence, the scientific research literature has previ‑
ously investigated the effects of different types 
of  noise on autonomic nervous system (ANS) 
by investigating heart rate variability (HRV) [1].

The consecutive heart beats (RR-intervals) 
derived from the electrocardiograph (ECG) have 
been demonstrated to f luctuate in an irregular and 
chaotic manner [2]. Here, the objective is to estimate 
the possible pathological risks that traffic noise expo‑
sure during driving in women poses to the individual 
by evaluating the heart rate variability (HRV). To 
complete this we enforced the Shannon Entropy [3] 
and Detrended Fluctuation Analysis (DFA) [4] algo‑
rithms to six alternate power spectra to understand 
which exhibited the greatest parametric sensitivity. At 
the outset, Garner and Ling [5] computed the spec‑
tral Entropy 5and spectral Detrended Fluctuation 
Analysis (sDFA) [5], and these were based on the 
Welch power spectrum [6, 7]. Later, the high spectral 
Entropy (hsEntropy) [8] and high spectral Detrended 
Fluctuation Analysis (hsDFA) [8]; were formulated 
founded on the Multi-Taper Method (MTM) power 
spectrum [9]. Yet, here further parameters based on 
Covariance [10], Burg [10], Yule-Walker [11] and the 
Periodogram [12] are computed. By implementing 
six different power spectra we hope to accomplish 
results of greater significance by parametric and non-
parametric statistics and, the three effect sizes (dis‑
cussed later) when equating the control subjects 
to those experiencing exposure to traffic noise via an 
earphone. It would then be possible to reach a clini‑
cal diagnosis quicker and provide the required treat‑
ment earlier. 

Chaotic global techniques are more responsive to 
erraticism in dynamical systems than those based on 
linear, time-domain, geometric methods, frequency 
domain or the nonlinear measurements [2]. Chaotic 
behaviour in biological systems typically indicates 
normal physiological status; while a reduction 
of chaotic tendencies could be a pathophysiological 
marker [13]. Such computations are beneficial when 
assessing surgical patients [13], particularly if seda- 
ted [14, 15] or incapable of indicating discomfort as 
with sleep apnea [16] or those with “air hunger” [17, 
18]. We expected the subjects exposed to traffic 
noise to perform in a nonlinear manner equivalent 
to persons with cardiac arrest [19], epileptic seizures 
[20, 21], chronic obstructive pulmonary disease 
(COPD) [22] or attention deficit hyperactivity dis‑
order (ADHD) [8].

The advantage for constructing the correlation 
with HRV is that it can provide a benchmark of the 

potential risks of the dynamical diseases [23] in the 
traffic noise exposure group. HRV is a simple, reli‑
able and inexpensive technique to continuously 
record the ANS. Therefore, we aimed to evaluate 
nonlinear HRV through chaotic global analysis du
ring exposure to traffic noise.

Material and methods 
All method and materials were exactly as in the 

study by Alves M, et al. [24], which followed the 
STROBE (STrengthening the Reporting of OBserva‑
tional studies in Epidemiology) guidelines. Our study 
previously published [24] described information 
regarding setting, variables, study design, partici‑
pants, measurements, data sources, quantitative vari‑
ables description, statistical methods and potential 
sources of bias. 

Ethical approval and informed consent. All proce‑
dures were performed in accordance with the 
466/2012 resolution of the National Health Council 
of December 12th 2012 and all subjects signed a con‑
fidential informed consent letter. All experimental 
protocols were inspected and approved by the 
Research Ethics Committee in Research of UNESP/
Marilia through the Brazilian online platform (Num‑
ber 5406). 

Six Power Spectra. Formerly, we computed the 
Welch and Multi-Taper Method (MTM) power spec‑
tras. De Souza NM, et al. [25] described the applica‑
tion of the Welch power spectrum to achieve chaotic 
globals in subjects with type I diabetes mellitus. Yet, 
it was anticipated that since the MTM is an adaptive 
and nonlinear technique, and as such has a reduced 
amount of spectral leakage it would potentially be 
more sensitive to chaotic responses. The high spectral 
Entropy (hsEntropy) and high spectral Detrended 
Fluctuation Analysis (hsDFA) via the MTM power 
spectrum have been applied in studies on malnutri‑
tion [26], youth obesity [27] and ADHD [8]. 
Throughout all of the studies we applied the MTM 
power spectrum to generate the third parameter 
spectral Multi-Taper Method (sMTM) [5]. This 
quantifies the extent of broadband noise in the sys‑
tem associated with increasing chaotic response. This 
parameter remains unchanged throughout all the 
subsequent analysis.

In this study, when calculating spectral Entropy 
(hsEntropy for MTM) or spectral DFA (hsDFA for 
MTM) we enforce six different power spectra (Welch, 
MTM, Covariance, Burg, Yule-Walker and Periodo‑
gram) to give six variants of these parameters. There 
are seven different non-trivial permutations of three 
chaotic globals. The Chaotic Forward Parameters 
(CFP1 to CFP7) enables seven different combina‑
tions of chaotic globals to be applied to ensure opti‑
mum chaotic response. Initially whilst assessing the 
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effects of the six power spectra all three chaotic global 
values have equal weighting of unity. The settings for 
these six power spectra are described next.

When we compute spectral Entropy and sDFA via 
Welch’s method the parameters are set at: (i) sam‑
pling frequency of 1Hz, (ii) 50% overlap, (iii) a Ham‑
ming window and the number of discrete Fourier 
transform (DFT) point to use in the power spectral 
density (PSD) estimate is the greater of 256 or the 
next power of two greater than the length of the seg‑
ments, and (iv) there is no detrending. 

Then, with MTM, the parameters are set as the 
following: (i) sampling frequency of 1Hz; (ii) time 
bandwidth for the discrete prolate spheroidal 
sequences (DPSS) often referred to as slepian 
sequences [28] is 3; (iii) FFT is the larger of 256 and 
the next power of two greater than the length of the 
segment (iv) Thomson’s adaptive nonlinear combi‑
nation method to combine individual spectral esti‑
mates is applied. 

The Periodogram power spectral density estimate 
is a nonparametric estimate of a wide-sense statio
nary random process using a rectangular window. 
The number of points in the discrete Fourier trans‑
form (DFT) is a maximum of 256 or the next power 
of two greater than the signal length.

Finally, for the Covariance, Burg and Yule-Walker 
methods the order is of the autoregressive model 
(AR) used to produce the power spectra density esti‑
mate and is set to 16. A default discrete Fourier trans‑
form (DFT) length of 256 is applied.

Nonlinear & statistical analysis
Chaotic Globals & CFP1 to CFP7. Spectral 

Entropy [5] (hsEntropy for the MTM) is an algo‑
rithm founded on the unevenness of the amplitude 
and frequency of the power spectrums peaks. Shan‑
non entropy [3] is the function applied to the cited 
power spectrum. We compute the Shannon entropy 
for three values attained from three various power 
spectra. So, the power spectra at three test settings: 
(a) a sine wave, (b) uniformly distributed random 
variables, and (c) the oscillating signal from the sub‑
jects exposed to traffic noise. The three values are 
reduced proportionately so that their sum of squares 
is equal to one. Spectral Entropy (hsEntropy for the 
MTM) is the median value of the three. 

DFA was derived in 1995 [4]. It can be executed 
on time-series where the mean, variance and auto‑
correlation adjust with time. sDFA (or, hsDFA for 
MTM) is where DFA is applied to the frequency 
rather than time. To acquire sDFA (or, hsDFA for 
MTM) we estimate the spectral adaptation in pre‑
cisely the same manner as with Spectral Entropy (or, 
hsEntropy for MTM). Yet, DFA is the algorithm 
enforced onto the appropriate power spectrum. 

Spectral Multi-Taper Method (sMTM) [5] is 
derived from elevated broadband noise intensities 
generated in MTM power spectra by irregular and 
often chaotic signals. sMTM is the area beneath the 
power spectrum but above the baseline. 

CFP1 to CFP7 are applied to RR-intervals from 
the control subjects and those undergoing traffic 
noise exposure. sDFA (and hsDFA) respond to chaos 
contrariwise to  the others, so we subtract its value 
from unity. There are seven non-trivial permutations 
of the three chaotic globals [8].

One-Way Analysis Of Variance & Kruskal-Wallis 
Tests. Parametric statistics accept that datasets are 
normally distributed, so they use the mean as a mea‑
sure of central tendancy. If we are unable to norma
lize the data we should not compare means. To prove 
normality we assessed the Anderson-Darling [29], 
Ryan-Joiner [30] and Lilliefors [29] tests. The Ander‑
son-Darling test for normality applies an empirical 
cumulative distribution function, but the Ryan-Joiner 
test is a correlation-based test comparable to Sha
piro-Wilk [31]. The Lilliefors test is particularly use‑
ful when studies have small sample sizes. Yet, in this 
study results were inconclusive throughout so we 
cannot declare that the observations are normally or 
non-normally distributed. So, we apply parametric 
and non-parametric tests of significance. Those cho‑
sen were the one-way analysis of variance (ANOVA1) 
[32] and the Kruskal-Wallis [33] tests of significance, 
respectively. 

Cohen’s d
s
, Hedges’s g

s
 and Glass’s ∆ Tests. 

Cohen’s d
s
 [34] is the leading subcategory of effect 

sizes. It refers to the standardized mean difference 
between two groups of independent observations for 
the appropriate sample [35]. It is founded on the 
sample means and gives a biased estimate of the 
population effect size [36].

In the algebraic formula for Cohen’s d
s
, the 

numerator is the variation between the means of two 
groups of observations. The denominator is the 
pooled standard deviation. These differences are 
squared. Then, they are summed and divided by the 
number of observations minus one for bias (hence, 
Bessel’s correction) in the estimate of the population 
variance. Finally, the square root is applied.
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Cohen’s d
s
 is often denoted as the uncorrected 

effect size. The corrected effect size is unbiased and 
may be termed Hedges’s g

s
 [37]. The difference 

between Cohen’s d
s
 and Hedges’s g

s
 is tiny especially 

in sample sizes greater than 20 [38]. Its algebraic for‑
mula is beneath. The same subscript letter in Hed
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ges’s g
s
 is applied to distinguish the different calcula‑

tions; as is the case here for Cohen’s d
s
.

Hedges's gs = Cohen's ds x
31 –

4(n1+n2)–9

Finally, when the standard deviations differ sub‑
stantially between conditions, Glass’s ∆ delta may be 
suitable [39]. This calculates the control group’s 
standard deviation alone, and the experimental group 
is avoided. 

For all effects’ sizes but particularly with Cohen’s 
d

s
 the extents are nominated as 0,01> very small 

effect; 0,20> small effect; 0,50> medium effect; 
0,80> large effect; 1,20> very large effect; 2,00> huge 

effect. These are based on the standards provided by 
Cohen [34] and, Sawilowsky [40]. 

CFP3 & CFP6 — MTM Spectrum only
Thomson’s nonlinear combination methods & DPSS. 

Now we assess the outcome of manipulating Thomson’s 
nonlinear combination settings on the MTM spectra. 
There are three options. They are “adapt”, “eigen”, or 
“unity” and are the weights on individual tapered power 
spectral density (PSD) estimates. The default “adapt” is 
the adaptive frequency-dependent weights. The “eigen” 
method weights each tapered PSD estimate by the 
eigenvalue (frequency concentration) of the corre‑
sponding Slepian taper. The “unity” method weights 
each tapered PSD estimate equally [41]. 

Figure 1. The boxplots of the seven combinations of chaotic forward parameters (CFP 1 to 7) for the six power spectra density (PSD) 
estimates (Welch, MTM, Burg, Covariance, Yule-Walker and Periodogram) of 500 RR intervals in control subjects (CFPx C) and traffic 
noise exposed subjects (CFPx T).
Note: the point closest to the zero is the minimum and the point farthest away is the maximum. The point next closest to the zero is the 
5th percentile and the point next farthest away is the 95th percentile. The boundary of the box closest to zero indicates the 25th percentile, 
a line within the box marks the median (not the mean), and the boundary of the box farthest from zero indicates the 75th percentile. The 
difference between these points is the inter-quartile range (IQR). Whiskers (or error bars) above and below the box indicate the 90th and 
10th percentiles respectively.
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Table 1
Chaotic responses (CFP 1 to CFP 7) derived via six power spectra 

 (Welch, MTM, Burg, Covariance, Yule-Walker & Periodogram)  
for control subjects (n=31) and those undergoing traffic noise exposure (n=31)

Power Spectrum CFP (1 to 7) ANOVA1 Kruskal-Wallis Glass’s ∆ Delta Hedges g
s

Cohen’s d
s

MTM CFP1 0,1243 0,0704 0,3982 0,3910 0,3960

CFP2 0,0395 0,0043 -0,5625 -0,5280 -0,5347

CFP3 <0,0001 <0,0001 1,2210 1,2720 1,2882

CFP4 0,5739 0,4182 0,1531 0,1418 0,1436

CFP5 0,0121 0,0011 -0,6905 -0,6487 -0,6569

CFP6 <0,0001 <0,0001 1,1530 1,0984 1,1124

CFP7 0,0748 0,0016 0,5156 0,4548 0,4606

Burg CFP1 0,1291 0,0621 0,3798 0,3860 0,3909

CFP2 0,9282 0,9047 0,0229 0,0227 0,0230

CFP3 0,0007 <0,0001 0,9064 0,9023 0,9138

CFP4 0,1105 0,0727 0,3921 0,4063 0,4115

CFP5 0,9506 0,7039 -0,0153 -0,0156 -0,0158

CFP6 <0,0001 <0,0001 1,1530 1,0984 1,1124

CFP7 0,7956 0,0911 0,0737 0,0653 0,0661

Welch CFP1 0,1410 0,0981 0,3846 0,3741 0,3789

CFP2 0,0321 0,0045 -0,5955 -0,5503 -0,5572

CFP3 <0,0001 <0,0001 1,2163 1,2649 1,2810

CFP4 0,6067 0,5310 0,1409 0,1298 0,1315

CFP5 0,0108 0,0013 -0,7091 -0,6599 -0,6683

CFP6 <0,0001 <0,0001 1,1530 1,0984 1,1124

CFP7 0,0745 0,0013 0,5177 0,4552 0,4610

Yule-Walker CFP1 0,0927 0,0898 0,4429 0,4285 0,4340

CFP2 0,3877 0,1699 -0,2478 -0,2182 -0,2210

CFP3 <0,0001 <0,0001 1,2084 1,2130 1,2285

CFP4 0,3343 0,2752 0,2540 0,2441 0,2472

CFP5 0,0659 0,0412 -0,4878 -0,4698 -0,4758

CFP6 <0,0001 <0,0001 1,1530 1,0984 1,1124

CFP7 0,1050 0,0021 0,5142 0,4129 0,4181

Periodogram CFP1 0,1769 0,1571 0,3473 0,3427 0,3471

CFP2 0,0915 0,0152 -0,4715 -0,4302 -0,4356

CFP3 <0,0001 <0,0001 1,2312 1,2754 1,2916

CFP4 0,5996 0,5590 0,1402 0,1324 0,1341

CFP5 0,0118 0,0041 -0,6958 -0,6517 -0,6600

CFP6 <0,0001 <0,0001 1,1530 1,0984 1,1124

CFP7 0,0757 0,0022 0,5194 0,4533 0,4591

Covariance CFP1 0,2100 0,2233 0,3085 0,3178 0,3219

CFP2 0,6217 0,1165 -0,1238 -0,1244 -0,1260

CFP3 0,0012 <0,0001 0,8479 0,8558 0,8666

CFP4 0,1417 0,1132 0,3520 0,3735 0,3782

CFP5 0,7448 0,2370 -0,0771 -0,0820 -0,0831

CFP6 <0,0001 <0,0001 1,1530 1,0984 1,1124

CFP7 0,4265 0,0060 -0,1980 -0,2008 -0,2033

Note: table of results for the chaotic responses (CFP 1 to CFP 7) derived via six power spectra (Welch, MTM, Burg, Covariance, 
Yule-Walker & Periodogram) for those control subjects (n=31) and those undergoing traffic noise exposure (n=31). We computed the 
significance (p-value) by parametric and nonparametric techniques: One way Analysis of Variance (ANOVA1) and Kruskal-Wallis tests of 
significance, respectively. We also calculated the effect sizes Glass’s ∆ Delta, Hedges g

s
 and Cohen’s d

s
. We assessed 500 RR-intervals 

throughout.
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Moreover, we simultaneously assess the effect of 
changing the settings of the DPSS from 2 to 13. A 
DPSS equal to 1, indicates the conventional Black‑
man and Tukey [42, 43] Fast Fourier Transform 
(FFT), so is excluded. 

DPSS affects the adaptation properties of the 
tapers with the intention of reducing spectral leakage. 
Whilst assessing the outcomes of the Thomson’s non‑
linear combinations settings and the levels of DPSS 
on the chaotic response the sampling frequency is 
fixed at 1Hz for the MTM and Fast Fourier Trans‑
form of length 256 is enforced. We assessed the out‑
comes of DPSS (2 to 13) and Thomson’s nonlinear 
combinations (“adaptive”, “eigen” and “unity”). 
Throughout the analysis there are 500 RR-intervals. 
We assessed CFP3 and CFP6. These are the only 
groupings significant under the default conditions 
and with all six power spectra.

Results
ANOVA1, Kruskal-Wallis & Effect Sizes
We have computed the seven permutations of the 

three chaotic globals CFP1 to CFP7 for 31 female 
subjects; both controls and those exposed to traffic 
noise via the earphone. We achieved this with 500 
RR intervals throughout. The statistical results are 
illustrated in the six boxplots, one for each power 
spectrum as in Figure 1.

As of Table 1 we detected that the combinations 
CFP3 and CFP6 behave equally during all six power 

spectra. All CFP3 and CFP6 for Welch, MTM, 
Covariance, Burg, Yule-Walker and Periodogram 
have similar reponses. They have a p<0,001 for the 
ANOVA1 and Kruskal-Wallis tests of significance 
and, have large to very large effect sizes by all three 
measures — Glass’s ∆ Delta, Hedges g

s
 and Cohen’s 

d
s
. They demonstrate an increase in chaotic response 

when comparing the controls to the traffic noise 
exposed group.

With MTM and Welch power spectra there are also 
significant results for CFP2 (p<0,05, medium effect 
sizes) and CFP5 (p<0,01, large effect sizes). Be that as 
it may, as revealed by the negative effect sizes the traf‑
fic noise exposed subjects exhibit a decrease in response 
when comparing control to the traffic noise exposed 
subjects. The Welch and MTM power spectra perform 
similarly throughout. MTM has the slightly better le
vels of significance when compared by the three effect 
sizes. It is not possible to distinguish between the two 
on the basis of the ANOVA1 and Kruskal-Wallis tests 
as the both give p<0,001. This is the advantage of cal‑
culating the effect sizes in this study.

Next the Periodogram power spectra has a signifi‑
cant result for CFP5 (p<0,01, medium effect size), 
yet the effect size value is negative and so responds in 
the opposite direction to those it calculated for CFP3 
and CFP6. Those values which give negative values 
for the effect sizes can be ignored. They are respond‑
ing incorrectly and have the lesser significances than 
CFP3 and CFP6.

Table 2
The properties of the discrete prolate spheroidal sequences (DPSS)  

value (2 to 13) on the effect sizes Glass’s ∆ Delta, Hedges g
s
 and Cohen’s d

s

DPSS
Value

CFP3 adaptive CFP6 adaptive

Glass’s ∆ delta Hedge’s g
s

Cohen’s d
s

Glass’s ∆ delta Hedge’s g
s

Cohen’s d
s

2 1,2101 1,2707 1,2869 1,1366 1,0912 1,1050

3 1,2221 1,2734 1,2896 1,1530 1,0984 1,1124

4 1,2197 1,2709 1,2871 1,1464 1,0943 1,1082

5 1,2324 1,2849 1,3012 1,1580 1,1053 1,1193

6 1,2406 1,2935 1,3099 1,1666 1,1137 1,1278

7 1,2423 1,2950 1,3115 1,1682 1,1149 1,1290

8 1,2442 1,2969 1,3134 1,1706 1,1172 1,1314

9 1,2442 1,2974 1,3139 1,1699 1,1174 1,1316

10 1,2436 1,2969 1,3134 1,1690 1,1168 1,1310

11 1,2440 1,2973 1,3138 1,1692 1,1171 1,1313

12 1,2435 1,2968 1,3133 1,1684 1,1165 1,1307

13 1,2451 1,2984 1,3149 1,1706 1,1183 1,1325

Note: the properties of the discrete prolate spheroidal sequences (DPSS) value (2 to 13) on the effect sizes Glass’s ∆ Delta, Hedges g
s
 

and Cohen’s d
s
 when comparing chaotic globals CFP3 and CFP6 for control subjects and those undergoing traffic noise exposure (both 

n=31). The remaining parameters are set as (a) sampling frequency of 1Hz; is (b) a discrete Fourier transform (DFT) length of 256 or the 
next power of two greater than the length of the segment (c) Thomson’s “adaptive” nonlinear combination method to combine individual 
spectral estimates is applied. 500 RR-intervals were assessed thoughout.
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Now we assess the consequence that the DPSS 
has on the significance of the results. We use the 
three effect sizes (Glass’s ∆ Delta, Hedges g

s
 and 

Cohen’s d
s
) here, as when we calculate the ANOVA1 

and Kruskal-Wallis they all perform equally with 
p<0,001. Therefore, it is very difficult to distinguish 

which values perform best. The range of statistical 
outcomes is unable to discriminate between their 
results.

When we calculate the effect sizes the values are 
similar throughout with all values greater than 1,08 
(large effect size) and the majority over 1,20 (very 

Table 3
The properties of the discrete prolate spheroidal sequences (DPSS)  

value (2 to 13) on the effect sizes called Glass’s ∆ Delta, Hedges g
s
 and Cohen’s d

s

DPSS
Value

CFP3 eigen CFP6 eigen

Glass’s ∆ delta Hedge’s g
s

Cohen’s d
s

Glass’s ∆ delta Hedge’s g
s

Cohen’s d
s

2 1,2024 1,2638 1,2798 1,1291 1,0847 1,0985

3 1,2205 1,2725 1,2887 1,1508 1,0960 1,1100

4 1,2232 1,2744 1,2906 1,1503 1,0964 1,1103

5 1,2253 1,2778 1,2940 1,1497 1,0976 1,1116

6 1,2322 1,2852 1,3015 1,1565 1,1046 1,1186

7 1,2347 1,2877 1,3040 1,1588 1,1067 1,1208

8 1,2371 1,2900 1,3064 1,1616 1,1093 1,1234

9 1,2379 1,2913 1,3077 1,1621 1,1104 1,1245

10 1,2381 1,2915 1,3079 1,1620 1,1105 1,1246

11 1,2388 1,2922 1,3087 1,1627 1,1113 1,1254

12 1,2390 1,2924 1,3088 1,1627 1,1114 1,1255

13 1,2405 1,2939 1,3103 1,1647 1,1131 1,1272

Note: the properties of the discrete prolate spheroidal sequences (DPSS) value (2 to 13) on the effect sizes called Glass’s ∆ Delta, 
Hedges g

s
 and Cohen’s d

s
 when comparing chaotic globals CFP3 and CFP6 for control subjects and those undergoing traffic noise 

exposure (both n=31). The remaining parameters are set as with Table 2 with the exception that Thomson’s “eigen” nonlinear combination 
method to combine individual spectral estimates is applied. Again, 500 RR-intervals were used for the calculations throughout.

Table 4
The effects of discrete prolate spheroidal sequences (DPSS)  
value (2 to 13) on Glass’s ∆ Delta, Hedges g

s
 and Cohen’s d

s

DPSS
Value

CFP3 unity CFP6 unity

Glass’s ∆ delta Hedge’s g
s

Cohen’s d
s

Glass’s ∆ delta Hedge’s g
s

Cohen’s d
s

2 1,2040 1,2647 1,2808 1,1297 1,0849 1,0987

3 1,2223 1,2736 1,2898 1,1526 1,0972 1,1112

4 1,2226 1,2735 1,2897 1,1491 1,0955 1,1094

5 1,2257 1,2782 1,2944 1,1495 1,0978 1,1118

6 1,2334 1,2864 1,3027 1,1575 1,1057 1,1198

7 1,2357 1,2887 1,3051 1,1597 1,1077 1,1218

8 1,2381 1,2911 1,3075 1,1627 1,1104 1,1246

9 1,2388 1,2922 1,3086 1,1629 1,1113 1,1254

10 1,2387 1,2922 1,3086 1,1627 1,1113 1,1254

11 1,2394 1,2929 1,3094 1,1633 1,1120 1,1261

12 1,2395 1,2929 1,3094 1,1632 1,1120 1,1262

13 1,2412 1,2946 1,3111 1,1655 1,1139 1,1281

Note: the effects of discrete prolate spheroidal sequences (DPSS) value (2 to 13) on Glass’s ∆ Delta, Hedges g
s
 and Cohen’s d

s
 when 

relating chaotic globals CFP3 and CFP6 for control subjects (n=31) and those undergoing traffic noise exposure (n=31). We used 
500 RR-intervals throughout. The remaining parameters are as with Table 2 and 3 with the exception that Thomson’s “unity” nonlinear 
combination method to combine individual spectral estimates is applied.
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large effect size). It is evident that the values for both 
CFP3 and CFP6 and for the three options of Thom‑
son’s nonlinear combination methods to combine 
individual spectral estimates (“adapt”, “eigen” and 
“unity”), increase slightly with increasing DPSS. 
Effect sizes for CFP3 are greater and therefore more 
significant than CFP6. So increasing DPSS increases 
the significance of the results. So a DPSS of 13 where 
there is a reduced amount of spectral leakage and 
more adaptation (compared to FFT of Blackman-
Tukey, DPSS of 1), is able to distinguish between the 
two groups in a more statistically significant manner. 
The mathematical markers are more efficient. 

Discussion
We can recognize from the results above that the 

most robust parameters throughout are CFP3 and 
CFP6. This was the situation for all six power spectra. 
MTM, Welch and Periodogram did have other groups 
which were significant but they responded in the inap‑
propriate manner regarding their chaotic response. 

So, for three of the power spectra — Welch, MTM 
and Periodogram all predicated on the Fast Fourier 
Transform, and all are non-parametric methods. It is 
expected that CFP3 would be the most statistically 
robust parameter. It has the best values when assessed 
by the three effect sizes. It is notable that the Welch 
and MTM power spectra perform very similarly, as 
would be expected. A Periodogram spectrum is able 
to give consistent results with higher noise levels than 
the other two. But it is the least sophisticated algo‑
rithm that we applied in this study [12]. Despite the 
Periodogram matching the MTM and Welch it is 
rejected because, it is a blunt tool; the MTM and 
Welch have more parameters which can be modified 
to achieve better responses. The main ones we 
assessed are for MTM and are the DPSS (2 to 13) and 
Thomson’s nonlinear combination methods to com‑
bine individual spectral estimates (“adapt”, “eigen” 
and “unity”).

For the other three power spectra, all are para‑
metric methods  — Burg, Covariance and Yule-
Walker and the results are mostly comparable, mar‑
ginally less significant when assessed by effect sizes. 
The order of the power spectra has little influence 
over the results. Here we set the orders to 16. These 
are more computer processor intensive algorithms, 
and so slower to calculate. It is recommended where 
possible to use the non-parametric techniques.

Returning to MTM we call these derivatives high 
spectral Entropy (hsEntropy) and high spectral 
Detrended Fluctuation Analysis (hsDFA) and they 
do slightly outperform those derived from the Welch 
power spectrum. Yet, the MTM power spectrum 

excels with regards to the various parameters which 
define the spectrum. For instance, the time band‑
width for the DPSS can be adjusted and Thomson’s 
“adaptive” nonlinear combination method to com‑
bine individual spectral estimates can be attuned to 
the “eigenvalue” or “unity” settings. 

This f lexiblity enables the possibility of increasing 
the significance of CFP3 and CFP6 derived from 
MTM power spectra. It is statistically valuable to 
increase the DPSS to 13 and, thus outperformed 
those with lower DPSS when compared by the three 
effect sizes (see Tables 2 to 4). Adjustments of Thom‑
son’s nonlinear combinations method appears lim‑
ited but “adapt” is the slightly better performer on 
the three effect sizes (also, Tables 2 to 4). Having 
time-series which are longer, and increasing the 
number of subjects for both control and traffic noise 
exposed subjects could be advantageous. 

The chaotic global metrics CFP3 (and CFP6), 
imposed on the HRV of women exposed to traffic 
noises and compared to the control groups are capa‑
ble of statistically discriminating the variation 
between them. They demonstrate an increase in cha‑
otic response when comparing the controls to the 
traffic noise exposed group. The results are more 
significant for CFP3 than CFP6, and the best per‑
formers are the Welch and MTM power spectra. 
When the DPSS is elevated for the MTM power 
spectrum the mathematical marker is improved; with 
increased effect sizes. The MTM power spectra is 
advocated as the best way of calculating chaotic glo‑
bals with highest DPSS set at 13. The three Thom‑
son’s nonlinear combination methods to combine 
individual spectral estimates settings had a minimal 
consequence, but the “adapt” option was slightly 
improved on the basis of the three effect sizes. It is 
accepted that longer time-series and increasing the 
number of subjects could be useful and, likely increase 
the statistical significance of the results.

Conclusion
Nonlinear HRV analysis through global chaotic 

approach detected changes in heart rhythm during 
traffic noise exposure, indicating increased nonlinear 
HRV during auditory stimulation.
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