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Chaotic global analysis of heart rate variability following power spectral adjustments during exposure

to traffic noise in healthy adult women

Garner D. M.1’2, Alves M.2, da Silva B. P.2, de Alcantara Sousa L. V.a, Valenti V. E.2

Aim. Previous studies have described the substantial impact of different types of
noise on the linear behaviour of heart rate variability (HRV). Yet, there are limited
studies about the complexity or nonlinear dynamics of HRV during exposure to
traffic noise. Here, we evaluated the complexity of HRV during traffic noise exposure
via six power spectra and, when adjusted by the parameters of the Multi-Taper
Method (MTM).

Material and methods. We analysed 31 healthy female students between 18 and
30 years old. Subjects remained at rest, seated under spontaneous breathing for 20
minutes with an earphone turned off and then the volunteers were exposed to traffic
noise through an earphone for a period of 20 minutes. The traffic noise was
recorded from a busy urban street and the sound involved car, bus, trucks engineers
and horn sounds (71-104 dB).

Results. The results stipulate that CFP3 and CFP6 are the best metrics to
distinguish the two groups. The most appropriate power spectra were, Welch and
MTM. Increasing the DPSS parameter of MTM increased the performance of both
CFP3 and CFP6 as mathematical markers. Adaptive was the preferred type for
Thomson’s nonlinear combination method.

Conclusion. CFP3 with the adaptive option for MTM, and increased DPSS is
designated as the best mathematical marker on the basis of five statistical tests.
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system, noise, noise occupational, nonlinear dynamics.
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AHanu3 rnobGanbHbIX Xa0TUYECKMX NapamMeTPoB BapmabenbHOCTU CepaeyHoro puTtma nocne
KOPPEKTUPOBKM CNEKTPanbHOW NJIOTHOCTU NPU BO3AEUCTBUM LUYMa OT ABMKEHUS TpaHCNopTa

Y 3A40POBbIX XX€HLUWUH

Garner D. M.1’2, Alves M.2, da Silva B. P.2, de Alcantara Sousa L. V.S, Valenti V.E.?

LUenb. B npeabiayluyx nccnenoBanusx 6610 NPOJEMOHCTPUPOBAHO CYLLECTBEH-
HOe BUSIHWUE PasfnyHbIX TUMOB LUYMa Ha JIMHENHYI0 AMHAMUKY BaprabenbHOCTM
cepaedHoro putma (BCP). Tem He MeHee, UMEeTCs Manio AaHHbIX O NMokasaTensx
HennHeHon anHamukm BCP npu BO3AECTBIM LyMa OT ABVXKEHWS TPaHcnopTa.
B HacTosiem nccnenoBaHnm Mbl OLEHUAW HENMHENHYIO AuHamuky BCP npu Bo3-
[eNCTBMM TPAHCMNOPTHOrO LUYMa C MOMOLLbIO LLECTV CNEKTPOB MAOTHOCTU 1 CNEKT-
panbHOro aHanmaa no MeToay MynbTu3aocTpeHuin (Multitaper method).
Martepuan u metoppl. B nccnenosanum yqacteoBanu 31 300poBasi CTyaeHTKa
B Bo3pacTte o7 18 0o 30 net. B TedeHne 20 MUHYT, HAXOASICb B COCTOSIHUM MOKOS,
Y4aCTHWLbI CUMAENN C BbIK/IIOYEHHLIMW HayLIHMKaMK, & 3aTeM Chyllanm 3anucb
TPaHCMOPTHOTO WyMa B TeyeHre 20 MUHYT. 3anuck 6bina caenaHa psgom ¢ OXuB-
JIEHHOI FOPOACKON yNnLei, 1 BKtoYana 3Bykn ABUXEHS SIErKOBbIX aBTOMOOMNEN,
aBTOOYCOB, FPY30BMKOB M 3BYKOBbIX CUrHanoB (71-104 ob).

Pesynbratbl. Pe3ynstathl npogemMoHcTpuposanu, 4to CFP3 n CFP6 sBnsioTcs
AyYLIMMIM NoKa3aTensiM1 Ans ONpeaeneHus pasnmuuii agyx rpynn. Havbonee noa-
XOASLMMUN BUAAMW CMEKTPANbHOrO aHanu3da fBnaaMcb Metomdbl Yanya (Welch
method) 1 MynbT3aocTpeHuin. Yeennyenue nokasatens DPSS npu ucnonb3osa-
HUV MEeTOAQ MyNbTV3a0CTPEHUI YBENNYNIO PYHKLMOHANBHYIO 3DdEKTUBHOCTb Kak
CFP3, Tak n CFP6 B ka4eCcTBe MaTemMaT4eckux MapkepoB. ALanTVBHbI BapuaHT
HeNnHeHo kombuHaumm no metoay TomncoHa (Thomson’s adaptive nonlinear
combination method) 6bin npeanoyTUTENEH.

Saknouenne. CFP3 ¢ agantvBHOI onuyei Ans METoAa MyNbTU3a0CTPEHNIA U yBe-
NndeHHbIM DPSS sBAsieTCS NyyLLMM MaTeMaTuyeckum Mapkepom Mo AaHHBIM MSTh
CTaTUCTUYECKNX KPUTEPHEB.

Knioyeeble cnoea: BereTatvBHas HEpBHas cuctema, GU3NONOrUs CEepAeyHO-
COCYAMCTON CUCTEMBI, CepAeYHO-COCYAMNCTasA CUCTEMA, LUIYM, MPOMbILLIEHHbINA
LUYM, HENIMHENHAA aMHaMMKa.
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Traffic noise exposure can be unpleasant and distract-
ing, which may have effects on physiological variables. It is
often found in hazardous situations as a result of industri-
alization and urbanization [1]. Hence, the scientific
research literature has previously investigated the effects of
different types of noise on autonomic nervous system
(ANS) by investigating heart rate variability (HRV) [1].

The consecutive heart beats (RR-intervals) derived from
the electrocardiograph (ECG) have been demonstrated to
fluctuate in an irregular and chaotic manner [2]. Here, the
objective is to estimate the possible pathological risks that
traffic noise exposure during driving in women poses to the
individual by evaluating the heart rate variability (HRV). To
complete this we enforced the Shannon Entropy [3] and
Detrended Fluctuation Analysis (DFA) [4] algorithms to six
alternate power spectra to understand which exhibited the
greatest parametric sensitivity. At the outset, Garner and
Ling [5] computed the spectral Entropy Sand spectral
Detrended Fluctuation Analysis (sDFA) [5], and these were
based on the Welch power spectrum [6, 7]. Later, the high
spectral Entropy (hsEntropy) [8] and high spectral Detrended
Fluctuation Analysis (AisDFA) [8]; were formulated founded
on the Multi-Taper Method (MTM) power spectrum [9].
Yet, here further parameters based on Covariance [10], Burg
[10], Yule-Walker [11] and the Periodogram [12] are com-
puted. By implementing six different power spectra we hope
to accomplish results of greater significance by parametric
and non-parametric statistics and, the three effect sizes (dis-
cussed later) when equating the control subjects to those
experiencing exposure to traffic noise via an earphone. It
would then be possible to reach a clinical diagnosis quicker
and provide the required treatment earlier.

Chaotic global techniques are more responsive to
erraticism in dynamical systems than those based on lin-
ear, time-domain, geometric methods, frequency domain
or the nonlinear measurements [2]. Chaotic behaviour in
biological systems typically indicates normal physiological
status; while a reduction of chaotic tendencies could be a
pathophysiological marker [13]. Such computations are
beneficial when assessing surgical patients [13], particu-
larly if sedated [14, 15] or incapable of indicating discom-
fort as with sleep apnea [16] or those with “air hunger” [17,
18]. We expected the subjects exposed to traffic noise to
perform in a nonlinear manner equivalent to persons with
cardiac arrest [19], epileptic seizures [20, 21], chronic

[Ansa uutupoBanus: Garner D. M., Alves M., da Silva B.P,, de Alcantara Sousa L. V.,
Valenti V. E. Chaotic global analysis of heart rate variability following power spectral
adjustments during exposure to traffic noise in healthy adult women. Russian
Journal of Cardiology. 2020;25(6):3739. doi:10.15829/1560-4071-2020-3739

obstructive pulmonary disease (COPD) [22] or attention
deficit hyperactivity disorder (ADHD) [8].

The advantage for constructing the correlation with
HRYV is that it can provide a benchmark of the potential
risks of the dynamical diseases [23] in the traffic noise
exposure group. HRV is a simple, reliable and inexpensive
technique to continuously record the ANS. Therefore, we
aimed to evaluate nonlinear HRV through chaotic global
analysis during exposure to traffic noise.

Material and methods

All method and materials were exactly as in the study
by Alves M, et al. [24], which followed the STROBE
(STrengthening the Reporting of OBservational studies in
Epidemiology) guidelines. Our study previously published
[24] described information regarding setting, variables,
study design, participants, measurements, data sources,
quantitative variables description, statistical methods and
potential sources of bias.

Ethical approval and informed consent. All procedures
were performed in accordance with the 466,/2012 resolution
of the National Health Council of December 12th 2012
and all subjects signed a confidential informed consent
letter. All experimental protocols were inspected and
approved by the Research Ethics Committee in Research
of UNESP/Marilia through the Brazilian online platform
(Number 5406).

Six Power Spectra. Formerly, we computed the Welch
and Multi-Taper Method (MTM) power spectras. De
Souza NM, et al. [25] described the application of the
Welch power spectrum to achieve chaotic globals in
subjects with type I diabetes mellitus. Yet, it was anticipated
that since the MTM is an adaptive and nonlinear technique,
and as such has a reduced amount of spectral leakage it
would potentially be more sensitive to chaotic responses.
The high spectral Entropy (hsEntropy) and high spectral
Detrended Fluctuation Analysis (AsDFA) via the MTM
power spectrum have been applied in studies on
malnutrition [26], youth obesity [27] and ADHD [8].
Throughout all of the studies we applied the MTM power
spectrum to generate the third parameter spectral Multi-
Taper Method (sSMTM) [5]. This quantifies the extent of
broadband noise in the system associated with increasing
chaotic response. This parameter remains unchanged
throughout all the subsequent analysis.
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In this study, when calculating spectral Entropy
(hsEntropy for MTM) or spectral DFA (AsDFA for MTM)
we enforce six different power spectra (Welch, MTM,
Covariance, Burg, Yule-Walker and Periodogram) to give
six variants of these parameters. There are seven different
non-trivial permutations of three chaotic globals. The
Chaotic Forward Parameters (CFP1 to CFP7) enables
seven different combinations of chaotic globals to be
applied to ensure optimum chaotic response. Initially
whilst assessing the effects of the six power spectra all three
chaotic global values have equal weighting of unity. The
settings for these six power spectra are described next.

When we compute spectral Entropy and sDFA via
Welch’s method the parameters are set at: (i) sampling
frequency of 1Hz, (ii) 50% overlap, (iii) a Hamming
window and the number of discrete Fourier transform
(DFT) point to use in the power spectral density (PSD)
estimate is the greater of 256 or the next power of two
greater than the length of the segments, and (iv) there is no
detrending.

Then, with MTM, the parameters are set as the
following: (i) sampling frequency of 1Hz; (ii) time
bandwidth for the discrete prolate spheroidal sequences
(DPSS) often referred to as slepian sequences [28] is 3; (iii)
FFT is the larger of 256 and the next power of two greater
than the length of the segment (iv) Thomson’s adaptive
nonlinear combination method to combine individual
spectral estimates is applied.

The Periodogram power spectral density estimate is a
nonparametric estimate of a wide-sense stationary random
process using a rectangular window. The number of points
in the discrete Fourier transform (DFT) is a maximum of
256 or the next power of two greater than the signal length.

Finally, for the Covariance, Burg and Yule-Walker
methods the order is of the autoregressive model (AR)
used to produce the power spectra density estimate and is
set to 16. A default discrete Fourier transform (DFT)
length of 256 is applied.

Nonlinear & statistical analysis

Chaotic Globals & CFP1 to CFP7. Spectral Entropy [5]
(hsEntropy for the MTM) is an algorithm founded on the
unevenness of the amplitude and frequency of the power
spectrums peaks. Shannon entropy [3] is the function
applied to the cited power spectrum. We compute the
Shannon entropy for three values attained from three
various power spectra. So, the power spectra at three test
settings: (a) a sine wave, (b) uniformly distributed random
variables, and (c¢) the oscillating signal from the subjects
exposed to traffic noise. The three values are reduced
proportionately so that their sum of squares is equal to one.
Spectral Entropy (AsEntropy for the MTM) is the median
value of the three.

DFA was derived in 1995 [4]. It can be executed on
time-series where the mean, variance and autocorrelation
adjust with time. sDFA (or, AsDFA for MTM) is where

DFA is applied to the frequency rather than time. To
acquire sSDFA (or, AisDFA for MTM) we estimate the
spectral adaptation in precisely the same manner as with
Spectral Entropy (or, AsEntropy for MTM). Yet, DFA is
the algorithm enforced onto the appropriate power
spectrum.

Spectral Multi-Taper Method (sMTM) [5] is derived
from elevated broadband noise intensities generated in
MTM power spectra by irregular and often chaotic signals.
SMTM is the area beneath the power spectrum but above
the baseline.

CFP1 to CFP7 are applied to RR-intervals from the
control subjects and those undergoing traffic noise expo-
sure. SDFA (and AsDFA) respond to chaos contrariwise
to the others, so we subtract its value from unity. There are
seven non-trivial permutations of the three chaotic globals
[8].

One-Way Analysis Of Variance & Kruskal-Wallis Tests.
Parametric statistics accept that datasets are normally
distributed, so they use the mean as a measure of central
tendancy. If we are unable to normalize the data we should
not compare means. To prove normality we assessed the
Anderson-Darling [29], Ryan-Joiner [30] and Lillicfors
[29] tests. The Anderson-Darling test for normality applies
an empirical cumulative distribution function, but the
Ryan-Joiner test is a correlation-based test comparable to
Shapiro-Wilk [31]. The Lilliefors test is particularly useful
when studies have small sample sizes. Yet, in this study
results were inconclusive throughout so we cannot declare
that the observations are normally or non-normally
distributed. So, we apply parametric and non-parametric
tests of significance. Those chosen were the one-way
analysis of variance (ANOVAL) [32] and the Kruskal-
Wallis [33] tests of significance, respectively.

Cohen’s d , Hedges’s g and Glass’s A Tests. Cohen’s d_
[34] is the leading subcategory of effect sizes. It refers to
the standardized mean difference between two groups of
independent observations for the appropriate sample [35].
It is founded on the sample means and gives a biased
estimate of the population effect size [36].

In the algebraic formula for Cohen’s ds, the numerator
is the variation between the means of two groups of
observations. The denominator is the pooled standard
deviation. These differences are squared. Then, they are
summed and divided by the number of observations minus
one for bias (hence, Bessel’s correction) in the estimate of
the population variance. Finally, the square root is applied.

X —X
(n,~1)SD] +(n,~1)SD;
nl +n2 _2

Cohen'sd, =

Cohen’s ds is often denoted as the uncorrected effect
size. The corrected effect size is umnbiased and may be
termed Hedges’s g [37]. The difference between Cohen’s
a’s and Hedges’s 8, is tiny especially in sample sizes greater
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Figure 1. The boxplots of the seven combinations of chaotic forward parameters (CFP 1 to 7) for the six power spectra density (PSD) estimates (Welch, MTM, Burg,
Covariance, Yule-Walker and Periodogram) of 500 RR intervals in control subjects (CFPx C) and traffic noise exposed subjects (CFPx T).

Note: the point closest to the zero is the minimum and the point farthest away is the maximum. The point next closest to the zero is the 5" percentile and the point next
farthest away is the 95" percentile. The boundary of the box closest to zero indicates the 25" percentile, a line within the box marks the median (not the mean), and the
boundary of the box farthest from zero indicates the 75" percentile. The difference between these points is the inter-quartile range (IQR). Whiskers (or error bars) above

and below the box indicate the 90" and 10" percentiles respectively.

than 20 [38]. Its algebraic formula is beneath. The same
subscript letter in Hedges’s g is applied to distinguish the
different calculations; as is the case here for Cohen’s ds.

Hedges's g = Cohen's d_x |:1 — 3—:|
4(n +n,)-9

Finally, when the standard deviations differ substantially
between conditions, Glass’s A delta may be suitable [39].
This calculates the control group’s standard deviation
alone, and the experimental group is avoided.

Forall effects’ sizes but particularly with Cohen’s d the
extents are nominated as 0,01> very small effect; 0,20>
small effect; 0,50> medium effect; 0,80> large effect;
1,20> very large effect; 2,00> huge effect. These are based
on the standards provided by Cohen [34] and, Sawilowsky
[40].

CFP3 & CFP6 — MTM Spectrum only

Thomson’s nonlinear combination methods & DPSS.
Now we assess the outcome of manipulating Thomson’s
nonlinear combination settings on the MTM spectra.
There are three options. They are “adapt”, “eigen”, or
“unity” and are the weights on individual tapered power
spectral density (PSD) estimates. The default “adapt” is
the adaptive frequency-dependent weights. The “eigen”
method weights ecach tapered PSD estimate by the
eigenvalue (frequency concentration) of the corresponding
Slepian taper. The “unity” method weights each tapered
PSD estimate equally [41].

Moreover, we simultaneously assess the effect of
changing the settings of the DPSS from 2 to 13. A DPSS
equal to 1, indicates the conventional Blackman and Tukey
[42, 43] Fast Fourier Transform (FFT), so is excluded.
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Table 1

Chaotic responses (CFP 1 to CFP 7) derived via six power spectra (Welch, MTM, Burg, Covariance,
Yule-Walker & Periodogram) for control subjects (n=31) and those undergoing traffic noise exposure (n=31)

Power Spectrum CFP (1t07) ANOVA1 Kruskal-Wallis Glass’s A Delta Hedges g, Cohen’s d_
MTM CFP1 0,1243 0,0704 0,3982 0,3910 0,3960
CFP2 0,0395 0,0043 -0,5625 -0,5280 -0,5347
CFP3 <0,0001 <0,0001 1,2210 1,2720 1,2882
CFP4 0,5739 0,4182 0,1531 0,1418 0,1436
CFP5 0,0121 0,0011 -0,6905 -0,6487 -0,6569
CFP6 <0,0001 <0,0001 1,1530 1,0984 1,1124
CFP7 0,0748 0,0016 0,5156 0,4548 0,4606
Burg CFP1 0,1291 0,0621 0,3798 0,3860 0,3909
CFP2 0,9282 0,9047 0,0229 0,0227 0,0230
CFP3 0,0007 <0,0001 0,9064 0,9023 0,9138
CFP4 0,1105 0,0727 0,3921 0,4063 0,4115
CFP5 0,9506 0,7039 -0,0153 -0,0156 -0,0158
CFP6 <0,0001 <0,0001 1,1530 1,0984 1,1124
CFP7 0,7956 0,0911 0,0737 0,0653 0,0661
Welch CFP1 0,1410 0,0981 0,3846 0,3741 0,3789
CFP2 0,0321 0,0045 -0,5955 -0,5503 -0,5572
CFP3 <0,0001 <0,0001 1,2163 1,2649 1,2810
CFP4 0,6067 0,5310 0,1409 0,1298 0,1315
CFP5 0,0108 0,0013 -0,7091 -0,6599 -0,6683
CFP6 <0,0001 <0,0001 1,1530 1,0984 1,1124
CFP7 0,0745 0,0013 0,5177 0,4552 0,4610
Yule-Walker CFP1 0,0927 0,0898 0,4429 0,4285 0,4340
CFP2 0,3877 0,1699 -0,2478 -0,2182 -0,2210
CFP3 <0,0001 <0,0001 1,2084 1,2130 1,2285
CFP4 0,3343 0,2752 0,2540 0,2441 0,2472
CFP5 0,0659 0,0412 -0,4878 -0,4698 -0,4758
CFP6 <0,0001 <0,0001 1,1530 1,0984 1,1124
CFP7 0,1050 0,0021 0,5142 0,4129 0,4181
Periodogram CFP1 0,1769 0,1571 0,3473 0,3427 0,3471
CFP2 0,0915 0,0152 -0,4715 -0,4302 -0,4356
CFP3 <0,0001 <0,0001 1,2312 1,2754 1,2916
CFP4 0,5996 0,5590 0,1402 0,1324 0,1341
CFP5 0,0118 0,0041 -0,6958 -0,6517 -0,6600
CFP6 <0,0001 <0,0001 1,1530 1,0984 1,1124
CFP7 0,0757 0,0022 0,5194 0,4533 0,4591
Covariance CFP1 0,2100 0,2233 0,3085 0,3178 0,3219
CFP2 0,6217 0,1165 -0,1238 -0,1244 -0,1260
CFP3 0,0012 <0,0001 0,8479 0,8558 0,8666
CFP4 0,1417 0,1132 0,3520 0,3735 0,3782
CFP5 0,7448 0,2370 -0,0771 -0,0820 -0,0831
CFP6 <0,0001 <0,0001 1,1530 1,0984 1,1124
CFP7 0,4265 0,0060 -0,1980 -0,2008 -0,2033

Note: table of results for the chaotic responses (CFP 1 to CFP 7) derived via six power spectra (Welch, MTM, Burg, Covariance, Yule-Walker & Periodogram) for those
control subjects (n=31) and those undergoing traffic noise exposure (n=31). We computed the significance (p-value) by parametric and nonparametric techniques: One
way Analysis of Variance (ANOVA1) and Kruskal-Wallis tests of significance, respectively. We also calculated the effect sizes Glass’s A Delta, Hedges g, and Cohen’s d_. We

assessed 500 RR-intervals throughout.

DPSS affects the adaptation properties of the tapers
with the intention of reducing spectral leakage. Whilst
assessing the outcomes of the Thomson’s nonlinear
combinations settings and the levels of DPSS on the

chaotic response the sampling frequency is fixed at 1 Hz for
the MTM and Fast Fourier Transform of length 256 is
enforced. We assessed the outcomes of DPSS (2 to 13) and
Thomson’s nonlinear combinations (“adaptive”, “eigen”
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Table 2

The properties of the discrete prolate spheroidal sequences (DPSS)
value (2 to 13) on the effect sizes Glass’s A Delta, Hedges g_and Cohen’s d_

DPSS CFP3 adaptive

Value Glass’s A delta Hedge's g, Cohen’s d,
2 1,2101 1,2707 1,2869
3 1,2221 1,2734 1,2896
4 1,2197 1,2709 1,2871
5 1,2324 1,2849 1,3012
6 1,2406 1,2935 1,3099
7 1,2423 1,2950 1,3115
8 1,2442 1,2969 1,3134
9 1,2442 1,2974 1,3139
10 1,2436 1,2969 1,3134
11 1,2440 1,2973 1,3138
12 1,2435 1,2968 1,3133
13 1,2451 1,2984 1,3149

CFP6 adaptive

Glass’s A delta Hedge’s g, Cohen’s dS
1,1366 1,0912 1,1050
1,1530 1,0984 1,1124
1,1464 1,0943 1,1082
1,1580 1,1053 1,1193
1,1666 1,137 1,1278
1,1682 1,1149 1,1290
1,1706 1,172 1,1314
1,1699 1,1174 1,1316
1,1690 1,168 1,1310
1,1692 1,1171 1,1313
1,1684 1,165 1,1307
1,1706 1,1183 1,1325

Note: the properties of the discrete prolate spheroidal sequences (DPSS) value (2 to 13) on the effect sizes Glass’s A Delta, Hedges g, and Cohen’s d_ when comparing
chaotic globals CFP3 and CFP6 for control subjects and those undergoing traffic noise exposure (both n=31). The remaining parameters are set as (a) sampling frequency
of 1Hz; is (b) a discrete Fourier transform (DFT) length of 256 or the next power of two greater than the length of the segment (c) Thomson's “adaptive” nonlinear
combination method to combine individual spectral estimates is applied. 500 RR-intervals were assessed thoughout.

and “unity”). Throughout the analysis there are 500 RR-
intervals. We assessed CFP3 and CFP6. These are the only
groupings significant under the default conditions and
with all six power spectra.

Results

ANOVAL, Kruskal-Wallis & Effect Sizes

We have computed the seven permutations of the three
chaotic globals CFP1 to CFP7 for 31 female subjects; both
controls and those exposed to traffic noise via the earphone.
We achieved this with 500 RR intervals throughout. The
statistical results are illustrated in the six boxplots, one for
each power spectrum as in Figure 1.

As of Table 1 we detected that the combinations CFP3
and CFP6 behave equally during all six power spectra. All
CFP3 and CFP6 for Welch, MTM, Covariance, Burg,
Yule-Walker and Periodogram have similar reponses. They
have a p<0,001 for the ANOVAI and Kruskal-Wallis tests
of significance and, have large to very large effect sizes by
all three measures — Glass’s A Delta, Hedges g and
Cohen’s ds. They demonstrate an increase in chaotic
response when comparing the controls to the traffic noise
exposed group.

With MTM and Welch power spectra there are also
significant results for CFP2 (p<0,05, medium effect sizes)
and CFP5 (p<0,01, large effect sizes). Be that as it may, as
revealed by the negative effect sizes the traffic noise
exposed subjects exhibit a decrease in response when
comparing control to the traffic noise exposed subjects.
The Welch and MTM power spectra perform similarly
throughout. MTM has the slightly better levels of
significance when compared by the three effect sizes. It is
not possible to distinguish between the two on the basis of

the ANOVAI and Kruskal-Wallis tests as the both give
p<0,001. This is the advantage of calculating the effect
sizes in this study.

Next the Periodogram power spectra has a significant
result for CFP5 (p<0,01, medium effect size), yet the
effect size value is negative and so responds in the opposite
direction to those it calculated for CFP3 and CFP6. Those
values which give negative values for the effect sizes can be
ignored. They are responding incorrectly and have the
lesser significances than CFP3 and CFP6.

Now we assess the consequence that the DPSS has on
the significance of the results. We use the three effect sizes
(Glass’s A Delta, Hedges g and Cohen’s d) here, as when
we calculate the ANOVAI and Kruskal-Wallis they all
perform equally with p<0,001. Therefore, it is very difficult
to distinguish which values perform best. The range of
statistical outcomes is unable to discriminate between their
results.

When we calculate the effect sizes the values are similar
throughout with all values greater than 1,08 (large effect
size) and the majority over 1,20 (very large effect size). It
is evident that the values for both CFP3 and CFP6 and for
the three options of Thomson’s nonlinear combination
methods to combine individual spectral estimates (“adapt”,
“eigen” and “unity”), increase slightly with increasing
DPSS. Effect sizes for CFP3 are greater and therefore
more significant than CFP6. So increasing DPSS increases
the significance of the results. So a DPSS of 13 where there
is a reduced amount of spectral leakage and more
adaptation (compared to FFT of Blackman-Tukey, DPSS
of 1), is able to distinguish between the two groups in a
more statistically significant manner. The mathematical
markers are more efficient.
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Table 3

The properties of the discrete prolate spheroidal sequences (DPSS)
value (2 to 13) on the effect sizes called Glass’s A Delta, Hedges g_and Cohen’s d_

DPSS CFP3 eigen

Value Glass’s A delta Hedge's g, Cohen’s d_
2 1,2024 1,2638 1,2798
3 1,2205 1,2725 1,2887
4 1,2232 1,2744 1,2906
5 1,2253 1,2778 1,2940
6 1,2322 1,2852 1,3015
7 1,2347 1,2877 1,3040
8 1,2371 1,2900 1,3064
9 1,2379 1,2913 1,3077
10 1,2381 1,2915 1,3079
11 1,2388 1,2922 1,3087
12 1,2390 1,2924 1,3088
13 1,2405 1,2939 1,3103

CFP6 eigen

Glass’s A delta Hedge’s g, Cohen’s ds
1,1291 1,0847 1,0985
1,1508 1,0960 1,1100
1,1503 1,0964 1,103
1,1497 1,0976 1,1116
1,1565 1,1046 1,186
1,1588 1,1067 1,1208
1,1616 1,1093 1,1234
1,1621 1,1104 1,1245
1,1620 1,1105 1,1246
1,1627 1,1113 1,1254
1,1627 1,114 1,1255
1,1647 1,1131 1,1272

Note: the properties of the discrete prolate spheroidal sequences (DPSS) value (2 to 13) on the effect sizes called Glass’s A Delta, Hedges g, and Cohen’s d, when
comparing chaotic globals CFP3 and CFP6 for control subjects and those undergoing traffic noise exposure (both n=31). The remaining parameters are set as with Table
2 with the exception that Thomson'’s “eigen” nonlinear combination method to combine individual spectral estimates is applied. Again, 500 RR-intervals were used for the

calculations throughout.

Table 4

The effects of discrete prolate spheroidal sequences (DPSS)
value (2 to 13) on Glass’s A Delta, Hedges g_and Cohen’s d_

DPSS CFP3 unity

Value Glass’s A delta Hedge's g, Cohen’s d,
2 1,2040 1,2647 1,2808
3 1,2223 1,2736 1,2898
4 1,2226 1,2735 1,2897
5 1,2257 1,2782 1,2944
6 1,2334 1,2864 1,3027
7 1,2357 1,2887 1,3051
8 1,2381 1,2911 1,3075
9 1,2388 1,2922 1,3086
10 1,2387 1,2922 1,3086
11 1,2394 1,2929 1,3094
12 1,2395 1,2929 1,3094
13 1,2412 1,2946 1,3111

CFP6 unity

Glass’s A delta Hedge’s g, Cohen’s ds
1,1297 1,0849 1,0987
1,1526 1,0972 1,1112
1,1491 1,0955 1,1094
1,1495 1,0978 1,1118
1,1575 1,1057 1,1198
1,1597 1,1077 1,1218
1,1627 1,1104 1,1246
1,1629 1,1113 1,1254
1,1627 1,113 1,1254
1,1633 1,1120 1,1261
1,1632 1,120 1,1262
1,1655 1,1139 1,1281

Note: the effects of discrete prolate spheroidal sequences (DPSS) value (2 to 13) on Glass’s A Delta, Hedges g, and Cohen’s d, when relating chaotic globals CFP3 and
CFP6 for control subjects (n=31) and those undergoing traffic noise exposure (n=31). We used 500 RR-intervals throughout. The remaining parameters are as with Table 2
and 3 with the exception that Thomson’s “unity” nonlinear combination method to combine individual spectral estimates is applied.

Discussion

We can recognize from the results above that the most
robust parameters throughout are CFP3 and CFP6. This
was the situation for all six power spectra. MTM, Welch
and Periodogram did have other groups which were
significant but they responded in the inappropriate manner
regarding their chaotic response.

So, for three of the power spectra — Welch, MTM and
Periodogram all predicated on the Fast Fourier Transform,
and all are non-parametric methods. It is expected that
CFP3 would be the most statistically robust parameter. It
has the best values when assessed by the three effect sizes.

It is notable that the Welch and MTM power spectra
perform very similarly, as would be expected. A
Periodogram spectrum is able to give consistent results
with higher noise levels than the other two. But it is the
least sophisticated algorithm that we applied in this study
[12]. Despite the Periodogram matching the MTM and
Welch it is rejected because, it is a blunt tool; the MTM
and Welch have more parameters which can be modified
to achieve better responses. The main ones we assessed are
for MTM and are the DPSS (2 to 13) and Thomson’s
nonlinear combination methods to combine individual
spectral estimates (“adapt”, “eigen” and “unity”).
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For the other three power spectra, all are parametric
methods — Burg, Covariance and Yule-Walker and the
results are mostly comparable, marginally less significant
when assessed by effect sizes. The order of the power
spectra has little influence over the results. Here we set the
orders to 16. These are more computer processor intensive
algorithms, and so slower to calculate. It is recommended
where possible to use the non-parametric techniques.

Returning to MTM we call these derivatives high
spectral Entropy (hsEntropy) and high spectral Detrended
Fluctuation Analysis (AsDFA) and they do slightly
outperform those derived from the Welch power spectrum.
Yet, the MTM power spectrum excels with regards to the
various parameters which define the spectrum. For
instance, the time bandwidth for the DPSS can be adjusted
and Thomson’s “adaptive” nonlinear combination method
to combine individual spectral estimates can be attuned to
the “eigenvalue” or “unity” settings.

This flexiblity enables the possibility of increasing the
significance of CFP3 and CFP6 derived from MTM power
spectra. It is statistically valuable to increase the DPSS to
13 and, thus outperformed those with lower DPSS when
compared by the three effect sizes (see Tables 2 to 4).
Adjustments of Thomson’s nonlinear combinations
method appears limited but “adapt” is the slightly better
performer on the three effect sizes (also, Tables 2 to 4).
Having time-series which are longer, and increasing the
number of subjects for both control and traffic noise
exposed subjects could be advantageous.

The chaotic global metrics CFP3 (and CFP6),
imposed on the HRV of women exposed to traffic noises
and compared to the control groups are capable of
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