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Chaotic global analysis of heart rate variability following power spectral adjustments during exposure 
to traffic noise in healthy adult women 

Garner D. M.1,2, Alves M.2, da Silva B. P.2, de Alcantara Sousa L. V.3, Valenti V. E.2

Анализ глобальных хаотических параметров вариабельности сердечного ритма после 
корректировки спектральной плотности при воздействии шума от движения транспорта 
у здоровых женщин

Garner D. M.1,2, Alves M.2, da Silva B. P.2, de Alcantara Sousa L. V.3, Valenti V. E.2

Aim.  Previous studies have described the substantial impact of different types of 
noise on the linear behaviour of heart rate variability (HRV). Yet, there are limited 
studies about the complexity or nonlinear dynamics of HRV during exposure to 
traffic noise. Here, we evaluated the complexity of HRV during traffic noise exposure 
via six power spectra and, when adjusted by the parameters of the Multi-Taper 
Method (MTM). 
Material and methods. We analysed 31 healthy female students between 18 and 
30 years old. Subjects remained at rest, seated under spontaneous breathing for 20 
minutes with an earphone turned off and then the volunteers were exposed to traffic 
noise through an earphone for a period of 20 minutes. The traffic noise was 
recorded from a busy urban street and the sound involved car, bus, trucks engineers 
and horn sounds (71-104 dB). 
Results. The results stipulate that CFP3 and CFP6 are the best metrics to 
distinguish the two groups. The most appropriate power spectra were, Welch and 
MTM. Increasing the DPSS parameter of MTM increased the performance of both 
CFP3 and CFP6 as mathematical markers. Adaptive was the preferred type for 
Thomson’s nonlinear combination method. 
Conclusion. CFP3 with the adaptive option for MTM, and increased DPSS is 
designated as the best mathematical marker on the basis of five statistical tests. 

Key words: autonomic nervous system, cardiovascular physiology, cardiovascular 
system, noise, noise occupational, nonlinear dynamics.
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Цель.  В предыдущих исследованиях было продемонстрировано существен-
ное влияние различных типов шума на линейную динамику вариабельности 
сердечного ритма (ВСР). Тем не менее, имеется мало данных о показателях 
нелинейной динамики ВСР при воздействии шума от движения транспорта. 
В настоящем исследовании мы оценили нелинейную динамику ВСР при воз-
действии транспортного шума с помощью шести спектров плотности и спект-
рального анализа по методу мультизаострений (Multitaper method).
Материал  и  методы. В исследовании участвовали 31 здоровая студентка 
в возрасте от 18 до 30 лет. В течение 20 минут, находясь в состоянии покоя, 
участницы сидели с выключенными наушниками, а затем слушали запись 
транспортного шума в течение 20 минут. Запись была сделана рядом с ожив-
ленной городской улицей, и включала звуки движения легковых автомобилей, 
автобусов, грузовиков и звуковых сигналов (71-104 дБ).
Результаты. Результаты продемонстрировали, что CFP3 и CFP6 являются 
лучшими показателями для определения различий двух групп. Наиболее под-
ходящими видами спектрального анализа являлись методы Уэлча (Welch 
method) и мультизаострений. Увеличение показателя DPSS при использова-
нии метода мультизаострений увеличило функциональную эффективность как 
CFP3, так и CFP6 в качестве математических маркеров. Адаптивный вариант 
нелинейной комбинации по методу Томпсона (Thomson’s adaptive nonlinear 
combination method) был предпочтителен.

Заключение. CFP3 с адаптивной опцией для метода мультизаострений и уве-
личенным DPSS является лучшим математическим маркером по данным пяти 
статистических критериев.

Ключевые  слова:  вегетативная нервная система, физиология сердечно-
сосудистой системы, сердечно-сосудистая система, шум, промышленный 
шум, нелинейная динамика.
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Traffic noise exposure can be unpleasant and distract‑
ing, which may have effects on physiological variables. It is 
often found in hazardous situations as a result of industri‑
alization and urbanization [1]. Hence, the scientific 
research literature has previously investigated the effects of 
different types of noise on autonomic nervous system 
(ANS) by investigating heart rate variability (HRV) [1].

The consecutive heart beats (RR‑intervals) derived from 
the electrocardiograph (ECG) have been demonstrated to 
fluctuate in an irregular and chaotic manner [2]. Here, the 
objective is to estimate the possible pathological risks that 
traffic noise exposure during driving in women poses to the 
individual by evaluating the heart rate variability (HRV). To 
complete this we enforced the Shannon Entropy [3] and 
Detrended Fluctuation Analysis (DFA) [4] algorithms to six 
alternate power spectra to understand which exhibited the 
greatest parametric sensitivity. At the outset, Garner and 
Ling [5] computed the spectral Entropy 5and spectral 
Detrended Fluctuation Analysis (sDFA) [5], and these were 
based on the Welch power spectrum [6, 7]. Later, the high 
spectral Entropy (hsEntropy) [8] and high spectral Detrended 
Fluctuation Analysis (hsDFA) [8]; were formulated founded 
on the Multi‑Taper Method (MTM) power spectrum [9]. 
Yet, here further parameters based on Covariance [10], Burg 
[10], Yule‑Walker [11] and the Periodogram [12] are com‑
puted. By implementing six different power spectra we hope 
to accomplish results of greater significance by parametric 
and non‑parametric statistics and, the three effect sizes (dis‑
cussed later) when equating the control subjects to those 
experiencing exposure to traffic noise via an earphone. It 
would then be possible to reach a clinical diagnosis quicker 
and provide the required treatment earlier. 

Chaotic global techniques are more responsive to 
erraticism in dynamical systems than those based on lin‑
ear, time‑domain, geometric methods, frequency domain 
or the nonlinear measurements [2]. Chaotic behaviour in 
biological systems typically indicates normal physiological 
status; while a reduction of chaotic tendencies could be a 
pathophysiological marker [13]. Such computations are 
beneficial when assessing surgical patients [13], particu‑
larly if sedated [14, 15] or incapable of indicating discom‑
fort as with sleep apnea [16] or those with “air hunger” [17, 
18]. We expected the subjects exposed to traffic noise to 
perform in a nonlinear manner equivalent to persons with 
cardiac arrest [19], epileptic seizures [20, 21], chronic 

obstructive pulmonary disease (COPD) [22] or attention 
deficit hyperactivity disorder (ADHD) [8].

The advantage for constructing the correlation with 
HRV is that it can provide a benchmark of the potential 
risks of the dynamical diseases [23] in the traffic noise 
exposure group. HRV is a simple, reliable and inexpensive 
technique to continuously record the ANS. Therefore, we 
aimed to evaluate nonlinear HRV through chaotic global 
analysis during exposure to traffic noise.

Material and methods 
All method and materials were exactly as in the study 

by Alves M, et al. [24], which followed the STROBE 
(STrengthening the Reporting of OBservational studies in 
Epidemiology) guidelines. Our study previously published 
[24] described information regarding setting, variables, 
study design, participants, measurements, data sources, 
quantitative variables description, statistical methods and 
potential sources of bias. 

Ethical approval and informed consent. All procedures 
were performed in accordance with the 466/2012 resolution 
of the National Health Council of December 12th 2012 
and all subjects signed a confidential informed consent 
letter. All experimental protocols were inspected and 
approved by the Research Ethics Committee in Research 
of UNESP/Marilia through the Brazilian online platform 
(Number 5406). 

Six Power Spectra. Formerly, we computed the Welch 
and Multi‑Taper Method (MTM) power spectras. De 
Souza NM, et al. [25] described the application of the 
Welch power spectrum to achieve chaotic globals in 
subjects with type I diabetes mellitus. Yet, it was anticipated 
that since the MTM is an adaptive and nonlinear technique, 
and as such has a reduced amount of spectral leakage it 
would potentially be more sensitive to chaotic responses. 
The high spectral Entropy (hsEntropy) and high spectral 
Detrended Fluctuation Analysis (hsDFA) via the MTM 
power spectrum have been applied in studies on 
malnutrition [26], youth obesity [27] and ADHD [8]. 
Throughout all of the studies we applied the MTM power 
spectrum to generate the third parameter spectral Multi‑
Taper Method (sMTM) [5]. This quantifies the extent of 
broadband noise in the system associated with increasing 
chaotic response. This parameter remains unchanged 
throughout all the subsequent analysis.
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In this study, when calculating spectral Entropy 
(hsEntropy for MTM) or spectral DFA (hsDFA for MTM) 
we enforce six different power spectra (Welch, MTM, 
Covariance, Burg, Yule‑Walker and Periodogram) to give 
six variants of these parameters. There are seven different 
non‑trivial permutations of three chaotic globals. The 
Chaotic Forward Parameters (CFP1 to CFP7) enables 
seven different combinations of chaotic globals to be 
applied to ensure optimum chaotic response. Initially 
whilst assessing the effects of the six power spectra all three 
chaotic global values have equal weighting of unity. The 
settings for these six power spectra are described next.

When we compute spectral Entropy and sDFA via 
Welch’s method the parameters are set at: (i) sampling 
frequency of 1Hz, (ii) 50% overlap, (iii) a Hamming 
window and the number of discrete Fourier transform 
(DFT) point to use in the power spectral density (PSD) 
estimate is the greater of 256 or the next power of two 
greater than the length of the segments, and (iv) there is no 
detrending. 

Then, with MTM, the parameters are set as the 
following: (i) sampling frequency of 1Hz; (ii) time 
bandwidth for the discrete prolate spheroidal sequences 
(DPSS) often referred to as slepian sequences [28] is 3; (iii) 
FFT is the larger of 256 and the next power of two greater 
than the length of the segment (iv) Thomson’s adaptive 
nonlinear combination method to combine individual 
spectral estimates is applied. 

The Periodogram power spectral density estimate is a 
nonparametric estimate of a wide‑sense stationary random 
process using a rectangular window. The number of points 
in the discrete Fourier transform (DFT) is a maximum of 
256 or the next power of two greater than the signal length.

Finally, for the Covariance, Burg and Yule‑Walker 
methods the order is of the autoregressive model (AR) 
used to produce the power spectra density estimate and is 
set to 16. A default discrete Fourier transform (DFT) 
length of 256 is applied.

Nonlinear & statistical analysis
Chaotic Globals & CFP1 to CFP7. Spectral Entropy [5] 

(hsEntropy for the MTM) is an algorithm founded on the 
unevenness of the amplitude and frequency of the power 
spectrums peaks. Shannon entropy [3] is the function 
applied to the cited power spectrum. We compute the 
Shannon entropy for three values attained from three 
various power spectra. So, the power spectra at three test 
settings: (a) a sine wave, (b) uniformly distributed random 
variables, and (c) the oscillating signal from the subjects 
exposed to traffic noise. The three values are reduced 
proportionately so that their sum of squares is equal to one. 
Spectral Entropy (hsEntropy for the MTM) is the median 
value of the three. 

DFA was derived in 1995 [4]. It can be executed on 
time‑series where the mean, variance and autocorrelation 
adjust with time. sDFA (or, hsDFA for MTM) is where 

DFA is applied to the frequency rather than time. To 
acquire sDFA (or, hsDFA for MTM) we estimate the 
spectral adaptation in precisely the same manner as with 
Spectral Entropy (or, hsEntropy for MTM). Yet, DFA is 
the algorithm enforced onto the appropriate power 
spectrum. 

Spectral Multi‑Taper Method (sMTM) [5] is derived 
from elevated broadband noise intensities generated in 
MTM power spectra by irregular and often chaotic signals. 
sMTM is the area beneath the power spectrum but above 
the baseline. 

CFP1 to CFP7 are applied to RR‑intervals from the 
control subjects and those undergoing traffic noise expo‑ 
sure. sDFA (and hsDFA) respond to chaos contrariwise 
to the others, so we subtract its value from unity. There are 
seven non‑trivial permutations of the three chaotic globals 
[8].

One-Way Analysis Of Variance & Kruskal-Wallis Tests. 
Parametric statistics accept that datasets are normally 
distributed, so they use the mean as a measure of central 
tendancy. If we are unable to normalize the data we should 
not compare means. To prove normality we assessed the 
Anderson‑Darling [29], Ryan‑Joiner [30] and Lilliefors 
[29] tests. The Anderson‑Darling test for normality applies 
an empirical cumulative distribution function, but the 
Ryan‑Joiner test is a correlation‑based test comparable to 
Shapiro‑Wilk [31]. The Lilliefors test is particularly useful 
when studies have small sample sizes. Yet, in this study 
results were inconclusive throughout so we cannot declare 
that the observations are normally or non‑normally 
distributed. So, we apply parametric and non‑parametric 
tests of significance. Those chosen were the one‑way 
analysis of variance (ANOVA1) [32] and the Kruskal‑
Wallis [33] tests of significance, respectively. 

Cohen’s d
s
, Hedges’s g

s
 and Glass’s ∆ Tests. Cohen’s d

s
 

[34] is the leading subcategory of effect sizes. It refers to 
the standardized mean difference between two groups of 
independent observations for the appropriate sample [35]. 
It is founded on the sample means and gives a biased 
estimate of the population effect size [36].

In the algebraic formula for Cohen’s d
s
, the numerator 

is the variation between the means of two groups of 
observations. The denominator is the pooled standard 
deviation. These differences are squared. Then, they are 
summed and divided by the number of observations minus 
one for bias (hence, Bessel’s correction) in the estimate of 
the population variance. Finally, the square root is applied.

2 2
1 1 2 2

'
( 1) ( 1)

2
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n n
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Cohen’s d
s
 is often denoted as the uncorrected effect 

size. The corrected effect size is unbiased and may be 
termed Hedges’s g

s
 [37]. The difference between Cohen’s 

d
s
 and Hedges’s g

s
 is tiny especially in sample sizes greater 
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than 20 [38]. Its algebraic formula is beneath. The same 
subscript letter in Hedges’s g

s
 is applied to distinguish the 

different calculations; as is the case here for Cohen’s d
s
.

Hedges's gs = Cohen's ds x
31 –

4(n1+n2)–9

Finally, when the standard deviations differ substantially 
between conditions, Glass’s ∆ delta may be suitable [39]. 
This calculates the control group’s standard deviation 
alone, and the experimental group is avoided. 

For all effects’ sizes but particularly with Cohen’s d
s
 the 

extents are nominated as 0,01> very small effect; 0,20> 
small effect; 0,50> medium effect; 0,80> large effect; 
1,20> very large effect; 2,00> huge effect. These are based 
on the standards provided by Cohen [34] and, Sawilowsky 
[40]. 

CFP3 & CFP6 — MTM Spectrum only
Thomson’s nonlinear combination methods & DPSS. 

Now we assess the outcome of manipulating Thomson’s 
nonlinear combination settings on the MTM spectra. 
There are three options. They are “adapt”, “eigen”, or 
“unity” and are the weights on individual tapered power 
spectral density (PSD) estimates. The default “adapt” is 
the adaptive frequency‑dependent weights. The “eigen” 
method weights each tapered PSD estimate by the 
eigenvalue (frequency concentration) of the corresponding 
Slepian taper. The “unity” method weights each tapered 
PSD estimate equally [41]. 

Moreover, we simultaneously assess the effect of 
changing the settings of the DPSS from 2 to 13. A DPSS 
equal to 1, indicates the conventional Blackman and Tukey 
[42, 43] Fast Fourier Transform (FFT), so is excluded. 

Figure 1. The boxplots of the seven combinations of chaotic forward parameters (CFP 1 to 7) for the six power spectra density (PSD) estimates (Welch, MTM, Burg, 
Covariance, Yule-Walker and Periodogram) of 500 RR intervals in control subjects (CFPx C) and traffic noise exposed subjects (CFPx T).
Note: the point closest to the zero is the minimum and the point farthest away is the maximum. The point next closest to the zero is the 5th percentile and the point next 
farthest away is the 95th percentile. The boundary of the box closest to zero indicates the 25th percentile, a line within the box marks the median (not the mean), and the 
boundary of the box farthest from zero indicates the 75th percentile. The difference between these points is the inter-quartile range (IQR). Whiskers (or error bars) above 
and below the box indicate the 90th and 10th percentiles respectively.
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DPSS affects the adaptation properties of the tapers 
with the intention of reducing spectral leakage. Whilst 
assessing the outcomes of the Thomson’s nonlinear 
combinations settings and the levels of DPSS on the 

chaotic response the sampling frequency is fixed at 1Hz for 
the MTM and Fast Fourier Transform of length 256 is 
enforced. We assessed the outcomes of DPSS (2 to 13) and 
Thomson’s nonlinear combinations (“adaptive”, “eigen” 

Table 1
Chaotic responses (CFP 1 to CFP 7) derived via six power spectra (Welch, MTM, Burg, Covariance,  

Yule-Walker & Periodogram) for control subjects (n=31) and those undergoing traffic noise exposure (n=31)

Power Spectrum CFP (1 to 7) ANOVA1 Kruskal-Wallis Glass’s ∆ Delta Hedges g
s

Cohen’s d
s

MTM CFP1 0,1243 0,0704 0,3982 0,3910 0,3960

CFP2 0,0395 0,0043 -0,5625 -0,5280 -0,5347

CFP3 <0,0001 <0,0001 1,2210 1,2720 1,2882

CFP4 0,5739 0,4182 0,1531 0,1418 0,1436

CFP5 0,0121 0,0011 -0,6905 -0,6487 -0,6569

CFP6 <0,0001 <0,0001 1,1530 1,0984 1,1124

CFP7 0,0748 0,0016 0,5156 0,4548 0,4606

Burg CFP1 0,1291 0,0621 0,3798 0,3860 0,3909

CFP2 0,9282 0,9047 0,0229 0,0227 0,0230

CFP3 0,0007 <0,0001 0,9064 0,9023 0,9138

CFP4 0,1105 0,0727 0,3921 0,4063 0,4115

CFP5 0,9506 0,7039 -0,0153 -0,0156 -0,0158

CFP6 <0,0001 <0,0001 1,1530 1,0984 1,1124

CFP7 0,7956 0,0911 0,0737 0,0653 0,0661

Welch CFP1 0,1410 0,0981 0,3846 0,3741 0,3789

CFP2 0,0321 0,0045 -0,5955 -0,5503 -0,5572

CFP3 <0,0001 <0,0001 1,2163 1,2649 1,2810

CFP4 0,6067 0,5310 0,1409 0,1298 0,1315

CFP5 0,0108 0,0013 -0,7091 -0,6599 -0,6683

CFP6 <0,0001 <0,0001 1,1530 1,0984 1,1124

CFP7 0,0745 0,0013 0,5177 0,4552 0,4610

Yule-Walker CFP1 0,0927 0,0898 0,4429 0,4285 0,4340

CFP2 0,3877 0,1699 -0,2478 -0,2182 -0,2210

CFP3 <0,0001 <0,0001 1,2084 1,2130 1,2285

CFP4 0,3343 0,2752 0,2540 0,2441 0,2472

CFP5 0,0659 0,0412 -0,4878 -0,4698 -0,4758

CFP6 <0,0001 <0,0001 1,1530 1,0984 1,1124

CFP7 0,1050 0,0021 0,5142 0,4129 0,4181

Periodogram CFP1 0,1769 0,1571 0,3473 0,3427 0,3471

CFP2 0,0915 0,0152 -0,4715 -0,4302 -0,4356

CFP3 <0,0001 <0,0001 1,2312 1,2754 1,2916

CFP4 0,5996 0,5590 0,1402 0,1324 0,1341

CFP5 0,0118 0,0041 -0,6958 -0,6517 -0,6600

CFP6 <0,0001 <0,0001 1,1530 1,0984 1,1124

CFP7 0,0757 0,0022 0,5194 0,4533 0,4591

Covariance CFP1 0,2100 0,2233 0,3085 0,3178 0,3219

CFP2 0,6217 0,1165 -0,1238 -0,1244 -0,1260

CFP3 0,0012 <0,0001 0,8479 0,8558 0,8666

CFP4 0,1417 0,1132 0,3520 0,3735 0,3782

CFP5 0,7448 0,2370 -0,0771 -0,0820 -0,0831

CFP6 <0,0001 <0,0001 1,1530 1,0984 1,1124

CFP7 0,4265 0,0060 -0,1980 -0,2008 -0,2033

Note: table of results for the chaotic responses (CFP 1 to CFP 7) derived via six power spectra (Welch, MTM, Burg, Covariance, Yule-Walker & Periodogram) for those 
control subjects (n=31) and those undergoing traffic noise exposure (n=31). We computed the significance (p-value) by parametric and nonparametric techniques: One 
way Analysis of Variance (ANOVA1) and Kruskal-Wallis tests of significance, respectively. We also calculated the effect sizes Glass’s ∆ Delta, Hedges gs

 and Cohen’s d
s
. We 

assessed 500 RR-intervals throughout.
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and “unity”). Throughout the analysis there are 500 RR‑
intervals. We assessed CFP3 and CFP6. These are the only 
groupings significant under the default conditions and 
with all six power spectra.

Results
ANOVA1, Kruskal-Wallis & Effect Sizes
We have computed the seven permutations of the three 

chaotic globals CFP1 to CFP7 for 31 female subjects; both 
controls and those exposed to traffic noise via the earphone. 
We achieved this with 500 RR intervals throughout. The 
statistical results are illustrated in the six boxplots, one for 
each power spectrum as in Figure 1.

As of Table 1 we detected that the combinations CFP3 
and CFP6 behave equally during all six power spectra. All 
CFP3 and CFP6 for Welch, MTM, Covariance, Burg, 
Yule‑Walker and Periodogram have similar reponses. They 
have a p<0,001 for the ANOVA1 and Kruskal‑Wallis tests 
of significance and, have large to very large effect sizes by 
all three measures  — Glass’s ∆ Delta, Hedges g

s
 and 

Cohen’s d
s
. They demonstrate an increase in chaotic 

response when comparing the controls to the traffic noise 
exposed group.

With MTM and Welch power spectra there are also 
significant results for CFP2 (p<0,05, medium effect sizes) 
and CFP5 (p<0,01, large effect sizes). Be that as it may, as 
revealed by the negative effect sizes the traffic noise 
exposed subjects exhibit a decrease in response when 
comparing control to the traffic noise exposed subjects. 
The Welch and MTM power spectra perform similarly 
throughout. MTM has the slightly better levels of 
significance when compared by the three effect sizes. It is 
not possible to distinguish between the two on the basis of 

the ANOVA1 and Kruskal‑Wallis tests as the both give 
p<0,001. This is the advantage of calculating the effect 
sizes in this study.

Next the Periodogram power spectra has a significant 
result for CFP5 (p<0,01, medium effect size), yet the 
effect size value is negative and so responds in the opposite 
direction to those it calculated for CFP3 and CFP6. Those 
values which give negative values for the effect sizes can be 
ignored. They are responding incorrectly and have the 
lesser significances than CFP3 and CFP6.

Now we assess the consequence that the DPSS has on 
the significance of the results. We use the three effect sizes 
(Glass’s ∆ Delta, Hedges g

s
 and Cohen’s d

s
) here, as when 

we calculate the ANOVA1 and Kruskal‑Wallis they all 
perform equally with p<0,001. Therefore, it is very difficult 
to distinguish which values perform best. The range of 
statistical outcomes is unable to discriminate between their 
results.

When we calculate the effect sizes the values are similar 
throughout with all values greater than 1,08 (large effect 
size) and the majority over 1,20 (very large effect size). It 
is evident that the values for both CFP3 and CFP6 and for 
the three options of Thomson’s nonlinear combination 
methods to combine individual spectral estimates (“adapt”, 
“eigen” and “unity”), increase slightly with increasing 
DPSS. Effect sizes for CFP3 are greater and therefore 
more significant than CFP6. So increasing DPSS increases 
the significance of the results. So a DPSS of 13 where there 
is a reduced amount of spectral leakage and more 
adaptation (compared to FFT of Blackman‑Tukey, DPSS 
of 1), is able to distinguish between the two groups in a 
more statistically significant manner. The mathematical 
markers are more efficient. 

Table 2
The properties of the discrete prolate spheroidal sequences (DPSS)  

value (2 to 13) on the effect sizes Glass’s ∆ Delta, Hedges g
s
 and Cohen’s d

s

DPSS
Value

CFP3 adaptive CFP6 adaptive

Glass’s ∆ delta Hedge’s g
s

Cohen’s d
s

Glass’s ∆ delta Hedge’s g
s

Cohen’s d
s

2 1,2101 1,2707 1,2869 1,1366 1,0912 1,1050

3 1,2221 1,2734 1,2896 1,1530 1,0984 1,1124

4 1,2197 1,2709 1,2871 1,1464 1,0943 1,1082

5 1,2324 1,2849 1,3012 1,1580 1,1053 1,1193

6 1,2406 1,2935 1,3099 1,1666 1,1137 1,1278

7 1,2423 1,2950 1,3115 1,1682 1,1149 1,1290

8 1,2442 1,2969 1,3134 1,1706 1,1172 1,1314

9 1,2442 1,2974 1,3139 1,1699 1,1174 1,1316

10 1,2436 1,2969 1,3134 1,1690 1,1168 1,1310

11 1,2440 1,2973 1,3138 1,1692 1,1171 1,1313

12 1,2435 1,2968 1,3133 1,1684 1,1165 1,1307

13 1,2451 1,2984 1,3149 1,1706 1,1183 1,1325

Note: the properties of the discrete prolate spheroidal sequences (DPSS) value (2 to 13) on the effect sizes Glass’s ∆ Delta, Hedges g
s
 and Cohen’s d

s
 when comparing 

chaotic globals CFP3 and CFP6 for control subjects and those undergoing traffic noise exposure (both n=31). The remaining parameters are set as (a) sampling frequency 
of 1Hz; is (b) a discrete Fourier transform (DFT) length of 256 or the next power of two greater than the length of the segment (c) Thomson’s “adaptive” nonlinear 
combination method to combine individual spectral estimates is applied. 500 RR-intervals were assessed thoughout.
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Discussion
We can recognize from the results above that the most 

robust parameters throughout are CFP3 and CFP6. This 
was the situation for all six power spectra. MTM, Welch 
and Periodogram did have other groups which were 
significant but they responded in the inappropriate manner 
regarding their chaotic response. 

So, for three of the power spectra — Welch, MTM and 
Periodogram all predicated on the Fast Fourier Transform, 
and all are non‑parametric methods. It is expected that 
CFP3 would be the most statistically robust parameter. It 
has the best values when assessed by the three effect sizes. 

It is notable that the Welch and MTM power spectra 
perform very similarly, as would be expected. A 
Periodogram spectrum is able to give consistent results 
with higher noise levels than the other two. But it is the 
least sophisticated algorithm that we applied in this study 
[12]. Despite the Periodogram matching the MTM and 
Welch it is rejected because, it is a blunt tool; the MTM 
and Welch have more parameters which can be modified 
to achieve better responses. The main ones we assessed are 
for MTM and are the DPSS (2 to 13) and Thomson’s 
nonlinear combination methods to combine individual 
spectral estimates (“adapt”, “eigen” and “unity”).

Table 3
The properties of the discrete prolate spheroidal sequences (DPSS)  

value (2 to 13) on the effect sizes called Glass’s ∆ Delta, Hedges g
s
 and Cohen’s d

s

DPSS
Value

CFP3 eigen CFP6 eigen

Glass’s ∆ delta Hedge’s g
s

Cohen’s d
s

Glass’s ∆ delta Hedge’s g
s

Cohen’s d
s

2 1,2024 1,2638 1,2798 1,1291 1,0847 1,0985

3 1,2205 1,2725 1,2887 1,1508 1,0960 1,1100

4 1,2232 1,2744 1,2906 1,1503 1,0964 1,1103

5 1,2253 1,2778 1,2940 1,1497 1,0976 1,1116

6 1,2322 1,2852 1,3015 1,1565 1,1046 1,1186

7 1,2347 1,2877 1,3040 1,1588 1,1067 1,1208

8 1,2371 1,2900 1,3064 1,1616 1,1093 1,1234

9 1,2379 1,2913 1,3077 1,1621 1,1104 1,1245

10 1,2381 1,2915 1,3079 1,1620 1,1105 1,1246

11 1,2388 1,2922 1,3087 1,1627 1,1113 1,1254

12 1,2390 1,2924 1,3088 1,1627 1,1114 1,1255

13 1,2405 1,2939 1,3103 1,1647 1,1131 1,1272

Note: the properties of the discrete prolate spheroidal sequences (DPSS) value (2 to 13) on the effect sizes called Glass’s ∆ Delta, Hedges g
s
 and Cohen’s d

s
 when 

comparing chaotic globals CFP3 and CFP6 for control subjects and those undergoing traffic noise exposure (both n=31). The remaining parameters are set as with Table 
2 with the exception that Thomson’s “eigen” nonlinear combination method to combine individual spectral estimates is applied. Again, 500 RR-intervals were used for the 
calculations throughout.

 Table 4
The effects of discrete prolate spheroidal sequences (DPSS)  
value (2 to 13) on Glass’s ∆ Delta, Hedges g

s
 and Cohen’s d

s

DPSS
Value

CFP3 unity CFP6 unity

Glass’s ∆ delta Hedge’s g
s

Cohen’s d
s

Glass’s ∆ delta Hedge’s g
s

Cohen’s d
s

2 1,2040 1,2647 1,2808 1,1297 1,0849 1,0987

3 1,2223 1,2736 1,2898 1,1526 1,0972 1,1112

4 1,2226 1,2735 1,2897 1,1491 1,0955 1,1094

5 1,2257 1,2782 1,2944 1,1495 1,0978 1,1118

6 1,2334 1,2864 1,3027 1,1575 1,1057 1,1198

7 1,2357 1,2887 1,3051 1,1597 1,1077 1,1218

8 1,2381 1,2911 1,3075 1,1627 1,1104 1,1246

9 1,2388 1,2922 1,3086 1,1629 1,1113 1,1254

10 1,2387 1,2922 1,3086 1,1627 1,1113 1,1254

11 1,2394 1,2929 1,3094 1,1633 1,1120 1,1261

12 1,2395 1,2929 1,3094 1,1632 1,1120 1,1262

13 1,2412 1,2946 1,3111 1,1655 1,1139 1,1281

Note: the effects of discrete prolate spheroidal sequences (DPSS) value (2 to 13) on Glass’s ∆ Delta, Hedges g
s
 and Cohen’s d

s
 when relating chaotic globals CFP3 and 

CFP6 for control subjects (n=31) and those undergoing traffic noise exposure (n=31). We used 500 RR-intervals throughout. The remaining parameters are as with Table 2 
and 3 with the exception that Thomson’s “unity” nonlinear combination method to combine individual spectral estimates is applied.
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For the other three power spectra, all are parametric 
methods  — Burg, Covariance and Yule‑Walker and the 
results are mostly comparable, marginally less significant 
when assessed by effect sizes. The order of the power 
spectra has little influence over the results. Here we set the 
orders to 16. These are more computer processor intensive 
algorithms, and so slower to calculate. It is recommended 
where possible to use the non‑parametric techniques.

Returning to MTM we call these derivatives high 
spectral Entropy (hsEntropy) and high spectral Detrended 
Fluctuation Analysis (hsDFA) and they do slightly 
outperform those derived from the Welch power spectrum. 
Yet, the MTM power spectrum excels with regards to the 
various parameters which define the spectrum. For 
instance, the time bandwidth for the DPSS can be adjusted 
and Thomson’s “adaptive” nonlinear combination method 
to combine individual spectral estimates can be attuned to 
the “eigenvalue” or “unity” settings. 

This f lexiblity enables the possibility of increasing the 
significance of CFP3 and CFP6 derived from MTM power 
spectra. It is statistically valuable to increase the DPSS to 
13 and, thus outperformed those with lower DPSS when 
compared by the three effect sizes (see Tables 2 to 4). 
Adjustments of Thomson’s nonlinear combinations 
method appears limited but “adapt” is the slightly better 
performer on the three effect sizes (also, Tables 2 to 4). 
Having time‑series which are longer, and increasing the 
number of subjects for both control and traffic noise 
exposed subjects could be advantageous. 

The chaotic global metrics CFP3 (and CFP6), 
imposed on the HRV of women exposed to traffic noises 
and compared to the control groups are capable of 

statistically discriminating the variation between them. 
They demonstrate an increase in chaotic response when 
comparing the controls to the traffic noise exposed 
group. The results are more significant for CFP3 than 
CFP6, and the best performers are the Welch and MTM 
power spectra. When the DPSS is elevated for the MTM 
power spectrum the mathematical marker is improved; 
with increased effect sizes. The MTM power spectra is 
advocated as the best way of calculating chaotic globals 
with highest DPSS set at 13. The three Thomson’s 
nonlinear combination methods to combine individual 
spectral estimates settings had a minimal consequence, 
but the “adapt” option was slightly improved on the basis 
of the three effect sizes. It is accepted that longer time‑
series and increasing the number of subjects could be 
useful and, likely increase the statistical significance of 
the results.

Conclusion
Nonlinear HRV analysis through global chaotic 

approach detected changes in heart rhythm during traffic 
noise exposure, indicating increased nonlinear HRV 
during auditory stimulation.
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