ГЕНЕТИЧЕСКИЕ АСПЕКТЫ ТЕРАПИИ

АЛЛЕЛЬНЫЕ ВАРИАНТЫ СҮР2С9*2 И СҮР2С9*3 ГЕНА ЦИТОХРОМА СҮР2С9 В ПОПУЛЯЦИИ САНКТ-ПЕТЕРБУРГА И ИХ КЛИНИЧЕСКОЕ ЗНАЧЕНИЕ ПРИ АНТИКОАГУЛЯНТНОЙ ТЕРАПИИ ВАРФАРИНОМ

Сироткина О.В.¹, Улитина А.С.², Тараскина А.Е.¹, Кадинская М.И.², Вавилова Т.В.², Пчелина С.Н.^{1,2}, Шварц Е.И.^{1,2}

Петербургский институт ядерной физики им. Б.П. Константинова PAH^1 , Санкт-Петербургский государственный медицинский университет им. И.П. Павлова²

Резюме

Одним из основных препаратов выбора для проведения терапии непрямыми антикоагулянтами, вышедшим в настоящее время на отечественный фармацевтический рынок, является варфарин. Фармакокинетические свойства данного препарата зависят от структурных полиморфизмов гена цитохрома CYP2C9, метаболизирующего варфарин. В настоящем исследовании мы проанализировали: 1) частоты встречаемости двух аллельных вариантов данного гена; 2) зависимость индивидуальной реакции пациентов на прием варфарина от генотипа CYP2C9. В результате было показано следующее: 1) частоты аллельных вариантов гена CYP2C9 в популяции г. Санкт-Петербурга составляют 82,66% (CYP2C9*1), 11,11% (CYP2C9*2) и 6,32% (CYP2C9*3); 2) носители CYP2C9*2 и CYP2C9*3 аллелей быстрее достигают терапевтического уровня гипокоагуляции и требуют достоверно меньшей недельной дозы препарата. На основании полученных результатов мы рекомендуем ввести в клиническую практику определение аллелей СYP2C9*2 и CYP2C9*3 у больных, которым назначается варфарин.

Ключевые слова: антикоагулянтная терапия, варфарин, генетические аспекты.

Тромбозы и тромбоэмболии различной этиологии являются одной из основных причин смертности и инвалидизации населения, что заставляет врачей прибегать к их фармакологической профилактике, в том числе – с помощью антикоагулянтов непрямого действия, в частности, варфарина. Отмечается различная чувствительность пациентов к варфарину и серьезные геморрагические осложнения при его передозировке. Индивидуальная чувствительность к варфарину обусловлена, в первую очередь, полиморфизмом цитохрома Р450 СҮР2С9, являющегося ключевым ферментом в окислении, и клиренсе варфарина [2, 8, 9]. Варфарин представляет собой рацемическую смесь двух активных (S)- и (R)-энантиомеров. Фармакологическая активность S-варфарина в пять раз выше, чем у R-варфарина. Было показано, что Sварфарин преимущественно конвертируется в печени с помощью цитохрома СҮР2С9 в 7-гидрокси-S-варфарин, который и элиминируется из организма [7]. Таким образом, каталитическая активность СҮР2С9 является решающим фактором в определении концентрации варфарина в плазме крови.

К настоящему времени в кодирующей части гена СҮР2С9 идентифицировано шесть структурных полиморфизмов [11], два из них характерны для белой расы: нуклеотидная замена С/Т в позиции 416 в третьем экзоне гена, что приводит к замене аргинина на цистеин в белковом продукте в позиции 144

(Arg144Cys), и нуклеотидная замена С/А в позиции 1061 в седьмом экзоне гена, что приводит к замене изолейцина на лейцин в 359 позиции белкового продукта (Ile359Leu). Данные аллельные варианты гена получили названия СҮР2С9*1 («дикий» аллель), CYP2C9*2 (Arg144Cys) и CYP2C9*3 (Ile359Leu). Каталитические активности фермента, кодируемого аллелями СҮР2С9*2 и СҮР2С9*3, снижены относительно СҮР2С9*1 и составляют 12% и 5%, соответственно [10]. Было показано, что необходимая ежедневная доза варфарина у носителей мутантных аллелей СҮР2С9*2 и СҮР2С9*3 существенно ниже, чем у лиц с «диким» генотипом [1, 6, 10]. Таким образом, генетические полиморфизмы СҮР2С9 детерминируют концентрацию варфарина в плазме и, соответственно, степень гипокоагуляции [7].

Появление на отечественном фармацевтическом рынке варфарина и отсутствие сведений о распределении структурных полиморфизмов гена СҮР2С9 и их клиническом значении для российской популяции послужило основанием для настоящего исследования, целью которого явилось определение частот встречаемости наиболее значимых полиморфных вариантов гена СҮР2С9 - СҮР2С9*2 и СҮР2С9*3 в популяции г. Санкт-Петербурга и выявление зависимости индивидуальной чувствительности к варфарину от наличия вышеуказанных структурных полиморфизмов гена СҮР2С9.

Таблица 1 Распределение генотипов СҮР2С9 в популяции г. Санкт-Петербурга

Генотип СҮР2С9	Число носи телей (n=297)	- Частота генотипа, %	
		фактическая*	расчетная
CYP2C9*1/*1	202	68,0	68,3
CYP2C9*1/*2	54	18,2	18,4
CYP2C9*1/*3	33	11,1	10,3
CYP2C9*2/*3	4	1,35	1,4
CYP2C9*2/*2	4	1,35	1,2
CYP2C9*3/*3	0	0	0,4

Примечание: * χ^2 =1,5, df=5, p>0,75 – различия между фактическими и расчетными частотами генотипов статистически незначимы.

Материалы и методы

В исследование были включены 297 человек в возрасте от 15 до 75 лет (средний возраст — 44 ± 2 года), являющиеся жителями г. Санкт-Петербурга, не связанные узами родства. Из них 186 мужчин были здоровы, 57 мужчин и 54 женщины наблюдались в клиниках СПбГМУ им. И.П.Павлова по поводу тромбозов различной локализации или повышенного риска тромбообразования.

Геномную ДНК выделяли из лейкоцитов периферической крови стандартным фенол-хлороформным методом.

Определения аллельных вариантов гена СҮР2С9 проводили с помощью полимеразной цепной реакции (ПЦР) и последующего рестрикционного анализа, с использованием эндонуклеаз Крп I, Ava II и Mph 1103 I («Fermentas», Литва) и олигонуклеотидов («Литех», Москва), как было описано ранее [11].

Из обследованных лиц 62 пациента получали варфарин для первичной или вторичной профилактики тромбозов или тромбоэмболических осложнений (ТЭО). Степень гипокоагуляции оценивали по уровню Международного Нормализованного Отношения (МНО). Использовали тромбопластин с индексами чувствительности 1,1-1,2 (Ренам, Москва и Технология-Стандарт, Барнаул). Для оценки фармакокинетики варфарина и индивидуальной чувствительности к препарату использовали два количественных показателя: длительность фазы индукции — сроки достижения терапевтического уровня МНО (количество дней) и недельную дозу варфарина (мг), которая требовалась для поддержания полученного эффекта.

Статистическая обработка полученных результатов проводилась с использованием стандартного пакета программ Statistica 5.0, для оценки соответствия полученного распределения генотипов равновесию Харди-Вайнберга применяли метод χ^2 , для сравнения средних значений числовых показателей в раз-

личных группах использовали непараметрический метод — U-тест Манн-Уитни. Значение p<0,05 принимали за значимый уровень достоверности.

Результаты исследования

Полученное в результате исследования распределение генотипов представлено в табл. 1. Данное распределение генотипов находится в соответствии с равновесием Харди-Вайнберга: χ^2 =1,5, df=5, p>0,75. Частоты аллелей составили: CYP2C9*1 — 82,66%, CYP2C9*2 — 11,11%, CYP2C9*3 — 6,32%, соответственно. Частота носительства CYP2C9*2 или CYP2C9*3 аллеля достигала 32%. Полученные нами частоты аллельных вариантов гена CYP2C9 в популяции г. Санкт-Петербурга соответствуют таковым в европейских популяциях [12]. Необходимо отметить, что нами не было выявлено ни одного носителя CYP2C9*3 аллеля в гомозиготном состоянии.

Анализ индивидуальной чувствительности к варфарину показал, что носители CYP2C9*2 и CYP2C9*3 аллелей быстрее достигают терапевтического уровня гипокоагуляции в период индукции и требуют достоверно меньшей недельной дозы препарата для поддержания терапевтического уровня. Причем, среди обследованных нами больных наибольший вклад в эти различия вносил аллель CYP2C9*3 (табл. 2).

Превышение МНО более 4,5 в период индукции на начальном этапе лечения варфарином было отмечено у семи больных. Еще четверо пациентов очень быстро достигли чрезмерной гипокоагуляции: значения МНО составили 4,65, 4,75, 5,28 и 6,08, соответственно, на первые и вторые сутки терапии. Генетическое исследование этих пациентов выявило носительство СҮР2С9*2 и СҮР2С9*3 аллелей в гетерозиготном состоянии. Кроме того, мы отмечали резкие колебания МНО при малейшем изменении дозы варфарина у большинства носителей СҮР2С9*2 и СҮР2С9*3 аллелей.

Обсуждение

Функционально-значимые полиморфизмы СҮР2С9, обуславливающие снижение его ферментативной активности, являются причиной развития побочных реакций для тех лекарств, которые метаболизируются данным ферментом. Это наглядно проиллюстрировано на примере варфарина: передозировка препарата приводит к серьезным геморагическим осложнениям, причем риск кровотечения при долгосрочной терапии варфарином выше именно у носителей мутантных аллелей [2]. Таким образом, лечение непрямыми антикоагулянтами требует решения двух задач: во-первых, подбор терапевтической дозы препарата при максимально коротком времени индукции без эпизодов чрезмерной гипокоагуляции и, тем более, кровотечения и,

Таблица 2 Зависимость индивидуальной реакции больных к варфарину от наличия аллельных вариантов гена CYP2C9

Генотип СҮР2С9	Число носителей (n=62)	Длительность фазы индукции, дни	Недельная доза варфарина, мг
CYP2C9*1/*1	46	5,40±0,45*	43,65±2,17**
CYP2C9*1/*2	10	4,22±0,64	31,87±2,27
CYP2C9*1/*3	5	2,75±1,03	22,75±3,50
CYP2C9*2/*3	1	2	17.5

Примечание: * - p=0,038 - CYP2C9*1/*1 против остальных генотипов; p=0,32 - CYP2C9*1/*1 против CYP2C9*1/*2; p=0,057 - CYP2C9*1/*1 против CYP2C9*1/*3; ** - p<0,0001 - CYP2C9*1/*1 против остальных генотипов.

во-вторых, поддержание постоянного оптимального уровня гипокоагуляции. Это обуславливает необходимость постоянного мониторинга МНО. Результаты нашего исследования показывают, что внедрение в клиническую практику генетического типирования аллельных вариантов гена СҮР2С9 может служить важным дополнением к рутинным коагулометрическим измерениям при терапии варфарином. Выявленная в настоящей работе зависимость индивидуальной реакции больных на прием варфарина от генотипов СҮР2С9 согласуется с литературными данными. Так, начальная доза варфарина для индивидуумов с аллельными вариантами *2 и *3 должна быть в пределах 1-1,5мг по сравнению с обычно используемой 5-10мг [5]. Аналогичные выводы были сделаны и в другом исследовании [8], где под наблюдением находились 153 человека, получавших варфарин в течение 11 месяцев. Данная исследуемая группа включала представителей черной и белой расы (22% и 78%, соответственно). Прежде всего, были выявлены существенные различия в частотах встречаемости полиморфных аллелей гена СҮР2С9 между двумя этническими группами – 15,2% и 39,2%, соответственно. Средняя недельная доза варфарина для лиц с аллельными вариантами СҮР2С9*2 и СҮР2С9*3 была существенно ниже, чем для остальной группы -30.6 ± 2.5 мг, по сравнению с $40,1\pm1,7$ мг (p=0,002). Нестабильность МНО у пациентов – носителей СҮР2С9*2 и СҮР2С9*3 аллелей – показана не только в нашем исследовании, но и у других авторов [2], которые проводили мониторинг МНО в группе 185 больных, получавших варфарин в течение 10 лет. Из них 58 человек (31,4%) были носителями как минимум одного из полиморфных аллелей СҮР2С9. У них статистически достоверно чаще встречались случаи повышения величин МНО, им требовалось больше времени для стабилизации величин МНО с момента старта терапии варфарином, и достоверно чаще случались кро-

вотечения. Все авторы приходят к выводу о высокой значимости типирования аллельных вариантов гена СҮР2С9 перед началом терапии варфарином, что согласуется с нашим заключением. При обсуждении результатов нашей работы нельзя не остановиться на следующей проблеме. Цитохром СҮР2С9, помимо варфарина, метаболизирует целый ряд лекарственных препаратов самого различного спектра действия - от нестероидных противовоспалительных средств (ибупрофен, диклофенак, пироксикам) – до противоэпилептических (фенитоин) [7, 3]. Уже существуют данные о потенциировании действия одного лекарственного препарата при одновременном приеме другого, также являющегося субстратом для СҮР2С9 [4]. Следовательно, определение аллельных вариантов гена СҮР2С9 становится особенно актуальным при полимедикации, когда больной вынужден принимать несколько лекарственных препаратов.

Выводы

- 1. Частоты аллельных вариантов гена СҮР2С9 в популяции г. Санкт-Петербурга составляют 82,66% (СҮР2С9*1), 11,11% (СҮР2С9*2) и 6,32% (СҮР2С9*3) и соответствуют таковым в европейских популяциях.
- 2. Носители CYP2C9*2 и CYP2C9*3 аллелей быстрее достигают терапевтического уровня гипокоагуляции при терапии варфарином и требуют достоверно меньшей недельной дозы варфарина.
- 3. Учитывая высокую частоту носительства СҮР2С9*2 и СҮР2С9*3 аллелей в популяции 32%, а также зависимость индивидуальной чувствительности пациентов к варфарину от генотипа СҮР2С9, необходимо рекомендовать внедрение в широкую клиническую практику генотипирование пациентов на аллельные варианты СҮР2С9*2 и СҮР2С9*3 до начала терапии варфарином для оптимизации сроков подбора требуемой дозы препарата и избежания геморрагических осложнений.

Авторы выражают глубокую благодарность коллективу лаборатории генной инженерии и иммуногенетики Научно-исследовательского института физико-химической медицины (Москва) за помощь в проведении настояшего исследования.

Литература

- Aithal G.P., Day C.P., Kesteven P.J.L., Daly A.K. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications // Lancet. -1999. – V. 353. P. 717-719.
- Higashi M.K., Veenstra D.L., Kondo L.M. et al. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy// JAMA. – 2002. – V. 287. P. 1690-1698.
- 3. Lee C.R., Goldstein J.A., Pieper J.A. Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data // Pharmacogenetics. 2002. V. 12. P. 251-263.
- 4. Lim V., Pande I. Leflunomide can potentiate the anticoagulant effect of warfarine. // BMJ. 2002. V. 325. P. 1333-1334.
- Mannucci P.M. Genetic control of anticoagulation // Lancet. 1999. – V. 353. – P. 688-689.
- Margaglione M., Colazzo D., D'Andrea G. et al. Genetic modulation of oral anticoagulation with warfarin // Thromb. Haemost. 2000. V. 84. P. 775-778.
- Miners J.O., Birkett D.J. Cytochrome P450 2C9: an enzyme of major importance in human drug metabolism // Br. J. Clin. Pharmacol. – 1998. – V. 45. – P. 525-536.

- Tabrizi A.R., Zehnbauer B.A., Borecki I.B. et al. The frequency and effects of cytochrome P450 (CYP) 2C9 polymorphisms in patients receiving warfarin // J. Am. Coll. Surg. – 2002. – V. 194. – P. 267-273
- Tassies D., Freire C., Puoan J., Maragall S. Et al. Pharmacogenetics of acenocoumarol: cytochrome P450 CYP2C9 polymorphisms influence dose requirements and stability of anticoagulation // Haematologica. – 2002. – V. 87. – P. 1185-1191.
- Taube J., Halsell D., Baglin T. Influence of cytochrom P-450 CYP2C9 polymorphisms on warfarin sensitivity and risk of overanticoagulation in patients on long-term treatment // Blood. – 2000. – V. 96. – P. 1816-1819.
- Yasar U., Eliasson E., Dahl M.-L. et al. Validation of methods for CYP2C9 genotyping: frequencies of mutant alleles in a Swedish population // Biochem. Biophys. Res. Commun. – 1999. – V. 254. – P. 628-631.
- Young-Ran Yoon, Ji-Hong Shon, Moon-Kyung Kim et al. Frequency of cytochrome P450 2C9 mutant alleles in a Korean population // Br. J. Clin. Pharmacol. – 2001. – V. 51. – P. 277-280

Abstract

One of the leading anticoagulants in Russia is warfarin. Its pharmacokinetics is determined by structural polymorphisms of CYP2C9 cytochrome gene, metabolizing warfarin. In the present study, the authors analyzed: 1) prevalence of two allele variants of this gene; 2) patients' individual reaction to warfarin, according to their CYP2C9 genotype. It was demonstrated that: 1) prevalence of CYP2C9 gene allele variants in St. Petersburg population was 82,66% (CYP2C9*1), 11,11% (CYP2C9*2), and 6,32% (CYP2C9*3); 2) individuals with CYP2C9*2 and CYP2C9*3 alleles reached therapeutic hypocoagulation faster, and required significantly lower weekly doses of the medication. Routine identification of CYP2C9*2 and CYP2C9*3 alleles is recommended to all patients administered warfarin.

Keywords: Anticoagulant therapy, warfarin, genetic aspects.

Поступила 20/12-2003